Text Style Transfer with Confounders

Tianxiao Shen Regina Barzilay Tommi Jaakkola
tianxiao@mit.edu

What Is "Style Transfer"?

From informal to formal

Gotta see both sides of the story
\rightarrow You have to consider both sides of the story
[Rao et al. 2018]

From Shakespeare to modern

Send thy man away \rightarrow Send your man away
[Xu et al. 2012]
From negative to positive sentiment
I would recommend find another place.
\rightarrow I would recommend this place again!
[Shen et al. 2017]
From dialect to written standard
From complex to simple sentences
[Zhu et al. 2017]

Easy: Paired Training Sets

- Supervised learning using paired examples of style transfer
source
target
(e.g., negative reviews) (e.g., positive reviews)
owner: a very rude man. \longrightarrow owner:a very friendly man. iwould not recommend giving them a try! we were both so disappointed! consistently slow. \qquad i'd definitely recommend giving them a try!
\longrightarrow we were both so impressed! \longrightarrow consistently fast.
- To collect parallel data is very costly or even impossible

Intermediate: Unpaired but Distributionally Matched Sets

- Available source and target sentences as sets differ only in terms of style, i.e., they are distributionally matched otherwise
source
training sentencetest sentence
target
(e.g., positive reviews)

- The desired style change is just the source vs target difference
- New sentences map to sentences similar to those already seen during training

Hard: Unpaired, Not Distributionally Matched Sets

- There are additional confounding differences between source and target sentences
source
target
training sentence
Test sentence

- Style change no longer equals source vs target difference
- New sentences map to type of sentences not seen during training

Solving Style Transfer with Confounders

source
(e.g., negative reviews)

target
(e.g., positive reviews)

- The task is illustrated by two groups of datasets (negative group and positive group), the primary distinction between them (sentiment) specifies the style to be transferred
- The intra-group variations (category) are confounding differences which need to be differentiated from the style and preserved during transfer

Solving Style Transfer with Confounders

source
(e.g., negative reviews)
target
(e.g., positive reviews)

- The intra-group variations (category) are confounding differences which need to be differentiated from the style and preserved during transfer

Task Formulation

- Given A_{1}, \ldots, A_{n} of style s_{A} and B_{n+1}, \ldots, B_{n+m} of style s_{B}, where A_{i} / B_{j} is a corpus consisting of sentences x
- Each corpus has its own characteristics
- Change only style and keep other aspects intact

$$
\begin{array}{ccc}
\begin{array}{c}
\text { style } s_{A} \\
A_{1} \\
\ldots \\
A_{n}
\end{array} & \longrightarrow & \text { style } s_{B} \\
& & \mathbf{?} \\
\mathbf{?} & \longleftarrow & \begin{array}{c}
B_{n+1} \\
\cdots
\end{array}
\end{array}
$$

Model Overview

1. Learn a pair of classifiers to detect style and orthogonal attributes

- Build on invariant risk minimization

2. Use the classifiers to guide a model to transfer in the desired direction

1.0 Invariant Risk Minimization (IRM)

- Specify a set of environments $\mathscr{E}=\left\{e_{1}, \ldots, e_{K}\right\}$, where $e_{k}=\left\{\left(x_{k}^{(i)}, y_{k}^{(i)}\right)\right\}_{i=1}^{n_{k}}$
- Environment difference accounts for nuisance variation we should not pay attention to
- Learn a feature representation that enables the same classifier to be optimal for all environments
- IRMv1: minimize empirical loss across all the data while penalize per-environment gradients with respect to any multiplier of the classifier output

$$
\begin{aligned}
& \min _{\Phi: X \rightarrow Y} \sum_{e \in \mathscr{E}} R^{e}(\Phi)+\lambda \cdot\left\|\nabla_{w \mid w=1.0} R^{e}(w \cdot \Phi)\right\|^{2} \\
& R^{e}(\Phi):=\mathbb{E}_{X^{e}, Y^{e}}\left[\ell\left(\Phi\left(X^{e}\right), Y^{e}\right)\right]
\end{aligned} \quad \begin{aligned}
& \text { gradients would be zero if } \Phi \\
& \text { is per-environment optimal }
\end{aligned}
$$

MIT CSAIL

1.1 Inferring Style

- Construct environments $e_{i, j}=\left\{(x, y=0) \mid x \in A_{i}\right\} \cup\left\{(x, y=1) \mid x \in B_{j}\right\}$
- Learn IRM classifier $C_{s}: \mathscr{X} \rightarrow \mathscr{Y}$ across $\left\{e_{1, n+1}, \ldots, e_{n, n+m}\right\}$
source
(e.g., negative reviews)
target
(e.g., positive reviews)

- Since all A_{i} share style s_{A} and all B_{j} share style s_{B}, style feature elicits an invariant classifier across $\left\{e_{i, j}\right\}$
- Conversely, if C_{s} uses any features specific to A_{i} / B_{j}, it won't be optimal in other $e_{i^{\prime}, j^{\prime}}$

1.2 Inferring Style-Independent Aspects

- Let $A=A_{1} \cup \ldots \cup A_{n}, B=B_{n+1} \cup \ldots \cup B_{n+m}, D=\{(x, y=0) \mid x \in A\} \cup\{(x, y=1) \mid x \in B\}$
- Construct environments based on C_{s} :

$$
e_{1}=\left\{(x, y) \in D \mid C_{s}(y \mid x)>0.5\right\}, e_{2}=\left\{(x, y) \in D \mid C_{s}(y \mid x) \leq 0.5\right\}
$$

- Learn IRM classifier $C_{o}: \mathscr{X} \rightarrow \mathscr{Y}$ across $\left\{e_{1}, e_{2}\right\}$

$C_{o}(y \mid x)$ is invariant across contours of (x, y) with respect to $C_{s}(y \mid x)$

$$
C_{s}(y \mid x) \geq 0.75
$$

2. Algorithm for Style Transfer

- Learn $M: \mathscr{X} \times \mathscr{Y} \rightarrow \mathscr{X}$ that takes a source sentence x and a target group y as input, and outputs a revised sentence that conforms to the style of group y
- Given a data example (x, y), let $\tilde{x} \sim M(x, 1-y)$ be the transferred output
- $\mathscr{L}_{\text {rec }}=-\log p_{M}(x \mid x, y)$
- $\mathscr{L}_{C_{s}}=-\log p_{C_{s}}(1-y \mid \tilde{x})$
(reconstruction) use Gumbel-Softmax to back-propagate
(different style) • length control
- $\mathscr{L}_{C_{o}}=-\log p_{C_{o}}(y \mid \tilde{x})$
(same orthogonal attributes)
- $\mathscr{L}_{L M}=D_{K L}\left(p_{M}(\cdot \mid x, 1-y) \| p_{L M}\right) \quad$ (language model regularization)
- $\mathscr{L}_{B T}=-\log p_{M}(x \mid \tilde{x}, y)$ maximize entropy (back-translation)

$$
\mathbb{E}_{(x, y)}\left[\mathscr{L}_{r e c}+\lambda_{1} \mathscr{L}_{C_{s}}+\lambda_{2} \mathscr{L}_{C_{o}}+\lambda_{3} \mathscr{L}_{L M}+\lambda_{4} \mathscr{L}_{B T}\right]
$$

Baselines

- M with C_{S} : without C_{o}

$$
\mathbb{E}_{(x, y)}\left[\mathscr{L}_{r e c}+\lambda_{1} \mathscr{L}_{C_{s}}+\lambda_{2} \mathscr{L}_{C_{o}}+\lambda_{3} \mathscr{L}_{L M}+\lambda_{4} \mathscr{L}_{B T}\right]
$$

Baselines

- M with C_{s} : without C_{o}
- M with $C_{E R M}$: guided by ERM classifier between A and B instead of C_{s} and C_{o}

$$
+\lambda \mathscr{L}_{C_{E R M}}=-\log p_{C_{E R M}}(1-y \mid \tilde{x})
$$

$$
\mathbb{E}_{(x, y)}\left[\mathscr{L}_{r e c}+\lambda_{1} \mathscr{L}_{C_{s}}+\lambda_{2} \mathscr{L}_{C_{o}}+\lambda_{3} \mathscr{L}_{L M}+\lambda_{4} \mathscr{L}_{B T}\right]
$$

Baselines

- M with C_{s} : without C_{o}
- M with $C_{E R M}$: guided by ERM classifier between A and B instead of C_{s} and C_{o}
- He et al. (2020): regard non-parallel data as partially observed parallel data; treat transferred sequences as latent variables and derive ELBO

Baselines

- M with C_{S} : without C_{o}
- M with $C_{E R M}$: guided by ERM classifier between A and B instead of C_{s} and C_{o}
- He et al. (2020): regard non-parallel data as partially observed parallel data; treat transferred sequences as latent variables and derive ELBO
- Krishna et al. (2020): use a separate paraphrasing dataset $D_{p p}$

1. train M on $D_{p p}$, and use it to paraphrase A to A^{\prime}, B to B^{\prime}
2. train inverse models M_{A} to map A^{\prime} to A, M_{B} to map B^{\prime} to B
3. to transfer a sentence to style A / B, apply M and then M_{A} / M_{B}
[^0]
Sentiment Transfer with Different Punctuations

- Adapt sentiment transfer dataset, modifying punctuation to create spurious correlation
- Goal: alter sentiment without changing punctuation

Automatic Evaluation Results

\square Krishna et al. \square He et al. $\square M \mathrm{w} / C_{E R M} \square M \mathrm{w} / C_{s} \square M \mathrm{w} / C_{s}, C_{o}$

Example Outputs

Input	the sales people here are terrible
Krishna et al.	the people here are absolutely terrible .
He etal.	the sales people here are great !
$M \mathrm{w} / C_{E R M}$	the sales people here are amazing!
$M \mathrm{w} / C_{s}$	the sales people here are fantastic!
$M \mathrm{w} / C_{s}, C_{o}$ (Ours)	the sales people here are amazing.
Input	excellent combination of flavors, very unique !
Krishna et al.	very unique combination of flavors, very unique !"
He etal.	horrible customer service.
$M \mathrm{w} / C_{E R M}$	terrible combination of flavors, very disappointing
$M \mathrm{w} / C_{s}$	terrible combination of flavors, not unique.
$M \mathrm{w} / C_{s}, C_{o}$ (Ours)	terrible combination of flavors, not outstanding !

Sentiment Transfer with Different Categories

- Take positive and negative Amazon reviews from different categories
- Goal: alter sentiment without changing product category
negative reviews

positive reviews

Automatic Evaluation Results

\square Krishna et al. \square He et al. $\square M \mathrm{w} / C_{E R M} \square M \mathrm{w} / C_{s} \square M \mathrm{w} / C_{s}, C_{o}$

Human Evaluation Results

Example Outputs

Input this shirt was too tight the sizing seems off.
Krishna et al. the shirt is too tight.
He et al. this case was great the protection seems great .
Ours this shirt works just perfect.the sizing seems well.

Input the containers do not lock well and are made of low quality materials.
Krishna et al. the containers do not fit securely and are made from poor quality material .
He et al. the phones work well and has made of sound quality of low quality materials.
Ours the containers does the job well and are made of high quality materials.

Input exactly as advertised.converted a molex plug into a sata
Krishna et al. the molex plug was convert to sata as advertised .
He et al. way too big. leaves a inaccurate cut into a bath
Ours not as advertised. converted a molex plug into a sata

A Step Forward: An Aspirational Example

- Transfer from sonnets to tweets (author is a confounder)

source
 target

Shakespeare's sonnets

Browning's sonnets
Pushkin's sonnets
?
(Shakespeare's tweets)

Obama's tweets Bieber's tweets Perry's tweets

[^0]: - $D_{p p}$ needs to exclude unwanted changes
 - $D_{p p}$ needs to cover the desired style transformation,
 otherwise the models are applied OOD

