Text Style Transfer with Confounders

Tianxiao Shen Regina Barzilay Tommi Jaakkola tianxiao@mit.edu

What Is "Style Transfer"?

source

target

Monet \rightarrow photo

horse \rightarrow zebra [Zhu et al. 2017]

From informal to formal

Gotta see both sides of the story \rightarrow You have to consider both sides of the story [Rao et al. 2018]

From Shakespeare to modern

Send thy man away \rightarrow Send your man away

[Xu et al. 2012]

From negative to positive sentiment

I would recommend find another place. \rightarrow I would recommend this place again!

[Shen et al. 2017]

From dialect to written standard From complex to simple sentences

...

Easy: Paired Training Sets

• Supervised learning using paired examples of style transfer

source (e.g., negative reviews)

owner: a very rude man. i would not recommend giving them a try! we were both so disappointed! consistently slow.

• To collect parallel data is very costly or even impossible

target (e.g., positive reviews)

- owner: a very friendly man.
- i'd definitely recommend giving them a try!
- we were both so impressed!
- consistently fast.

Intermediate: Unpaired but Distributionally Matched Sets

distributionally matched otherwise

- The desired style change is just the source vs target difference

• Available source and target sentences as sets differ only in terms of style, i.e., they are

New sentences map to sentences similar to those already seen during training

[Shen et al. 2017]

Hard: Unpaired, Not Distributionally Matched Sets

- training sentence test sentence

- Style change no longer equals source vs target difference
- New sentences map to type of sentences not seen during training

• There are additional confounding differences between source and target sentences

source

- differentiated from the style and preserved during transfer

• The task is illustrated by two groups of datasets (negative group and positive group), the **primary distinction** between them (sentiment) specifies the style to be transferred • The intra-group variations (category) are **confounding differences** which need to be

source

The intra-group variations (category) are **confounding differences** which need to be differentiated from the style and preserved during transfer

Task Formulation

- Given A_1, \ldots, A_n of style s_A and B_{n+1}, \ldots, B_{n+m} of style s_B , where A_i / B_j is a corpus consisting of sentences *x*
- Each corpus has its own characteristics
- Change only style and keep other aspects intact

Model Overview

- 1. Learn a pair of classifiers to detect style and orthogonal attributes - Build on invariant risk minimization
- 2. Use the classifiers to guide a model to transfer in the desired direction

1.0 Invariant Risk Minimization (IRM)

- Specify a set of environments $\mathscr{E} = \{e_1, ..., e_k\}$, where $e_k = \{(x_k^{(i)}, y_k^{(i)})\}_{i=1}^{n_k}$
- environments
- IRMv1: minimize empirical loss across all the data while penalize per-environment gradients with respect to any multiplier of the classifier output

 $R^{e}($

is th

Environment difference accounts for nuisance variation we should **not** pay attention to Learn a feature representation that enables the same classifier to be optimal for all

1.1 Inferring Style

- Construct environments $e_{i,j} = \{(x, y = 0)\}$
- Learn IRM classifier $C_s : \mathcal{X} \to \mathcal{Y}$ across

$$| x \in A_i \} \cup \{(x, y = 1) | x \in B_j \}$$

 $\{e_{1,n+1}, \dots, e_{n,n+m}\}$

, y = 1- Since all A_i share style s_A and all B_i share style s_R , style feature elicits an invariant , y = 1classifier across $\{e_{i,j}\}$ - Conversely, if C_s uses any features specific , y = 1to A_i/B_j , it won't be optimal in other $e_{i',i'}$, y = 1

1.2 Inferring Style-Independent Aspects

- Construct environments based on C_s : $e_1 = \{(x, y) \in D \mid C_s(y \mid x) > 0.5\}, e_2 = \{(x, y) \in D \mid C_s(y \mid x) \le 0.5\}$
- Learn IRM classifier $C_o: \mathcal{X} \to \mathcal{Y}$ across $\{e_1, e_2\}$

• Let $A = A_1 \cup \ldots \cup A_n$, $B = B_{n+1} \cup \ldots \cup B_{n+m}$, $D = \{(x, y = 0) \mid x \in A\} \cup \{(x, y = 1) \mid x \in B\}$

2. Algorithm for Style Transfer

- Learn $M: \mathcal{X} \times \mathcal{Y} \to \mathcal{X}$ that takes a source sentence x and a target group y as input, and outputs a revised sentence that conforms to the style of group y
- Given a data example (x, y), let $\tilde{x} \sim M(x, 1 y)$ be the transferred output

-
$$\mathscr{L}_{rec} = -\log p_M(x | x, y)$$

- $\mathscr{L}_{C_s} = -\log p_{C_s}(1 - y | \tilde{x})$
- $\mathscr{L}_{C_o} = -\log p_{C_o}(y | \tilde{x})$
- $\mathscr{L}_{LM} = D_{KL}(p_M(\cdot | x, 1 - y) || p_{LM})$
- $\mathscr{L}_{BT} = -\log p_M(x | \tilde{x}, y)$ maximize entropy

$$\mathbb{E}_{(x,y)}[\mathscr{L}_{rec} + \lambda_1 \mathscr{L}_{C_s} + \lambda_2 \mathscr{L}_{C_o} + \lambda_3 \mathscr{L}_{LM} + \lambda_4 \mathscr{L}_{BT}]$$

- (reconstruction)
- (different style)
- use Gumbel-Softmax to back-propagate
 - temperature annealing
 - length control
- (same orthogonal attributes)
- (language model regularization)
- (back-translation)

• M with C_s : without C_o

$$\mathbb{E}_{(x,y)}[\mathscr{L}_{rec}+\lambda_1\mathscr{L}_{C_s}-$$

 $+ \lambda_2 \mathscr{L}_{C_o} + \lambda_3 \mathscr{L}_{LM} + \lambda_4 \mathscr{L}_{BT}]$

- *M* with C_s : without C_o
- *M* with C_{ERM} : guided by ERM classifier between A and B instead of C_s and C_o

$$+\lambda \mathscr{L}_{C_{ERM}} =$$

$$\mathbb{E}_{(x,y)}[\mathscr{L}_{rec} + \lambda_1 \mathscr{L}_{C_s} + \lambda_2 \mathscr{L}_{C_o} + \lambda_3 \mathscr{L}_{LM} + \lambda_4 \mathscr{L}_{BT}]$$

$$-\log p_{C_{ERM}}(1-y\,|\,\tilde{x})$$

- M with C_s : without C_o
- M with C_{ERM} : guided by ERM classifier between A and B instead of C_s and C_o
- transferred sequences as latent variables and derive ELBO

$$D_{KL}(p_{M}(\cdot | x, 1 - y) || p_{LM_{1-y}})$$

$$\mathbb{E}_{(x,y)}[\mathscr{L}_{rec} + \lambda_{1}\mathscr{L}_{C_{s}} + \lambda_{2}\mathscr{L}_{C_{o}} + \lambda_{3}\mathscr{L}_{LM} + \lambda_{4}\mathscr{L}_{BT}]$$

• He et al. (2020): regard non-parallel data as partially observed parallel data; treat

- *M* with C_s : without C_o
- *M* with C_{ERM} : guided by ERM classifier between A and B instead of C_s and C_o
- He et al. (2020): regard non-parallel data as partially observed parallel data; treat transferred sequences as latent variables and derive ELBO
- Krishna et al. (2020): use a separate paraphrasing dataset D_{pp}
 - 1. train M on D_{pp} , and use it to paraphrase A to A', B to B'
 - 2. train inverse models M_A to map A' to A, M_B to map B' to B
 - 3. to transfer a sentence to style A/B, apply M and then M_A/M_B

- D_{pp} needs to exclude unwanted changes
- D_{pp} needs to cover the desired style transformation, otherwise the models are applied OOD

Sentiment Transfer with Different Punctuations

- Goal: alter sentiment without changing punctuation

Adapt sentiment transfer dataset, modifying punctuation to create spurious correlation

Automatic Evaluation Results

-			
-			
-			

Punctuation ACC

Example Outputs

Input Krishna et al. He et al. $M \le C_{ERM}$ $M \le C_s$ $M \le C_s$, C_o (Ours)

Input Krishna et al. He et al. $M \le C_{ERM}$ $M \le C_s$ $M \le C_s$ (Ours) the sales people here are terrible. the people here are absolutely terrible. the sales people here are great ! the sales people here are amazing ! the sales people here are fantastic ! the sales people here are amazing.

excellent combination of flavors, very unique !
very unique combination of flavors, very unique !".
horrible customer service.
terrible combination of flavors, very disappointing.
terrible combination of flavors, not unique.
terrible combination of flavors, not outstanding !

Sentiment Transfer with Different Categories

- Take positive and negative Amazon reviews from different categories
- Goal: alter sentiment without changing product category

negative reviews

positive reviews

Automatic Evaluation Results

Category ACC

Human Evaluation Results

Example Outputs

- this shirt was too tight. the sizing seems off. Input Krishna et al. the shirt is too tight. this case was great. the protection seems great. He et al. this shirt works just perfect. the sizing seems well. Ours
- the containers do not lock well and are made of low quality materials. Input the containers do not fit securely and are made from poor quality material. Krishna et al. the phones work well and has made of sound quality of low quality materials. He et al. the containers does the job well and are made of high quality materials. Ours
- Input Krishna et al. He et al. Ours
- exactly as advertised.converted a molex plug into a sata the molex plug was convert to sata as advertised. way too big. leaves a inaccurate cut into a bath not as advertised.converted a molex plug into a sata

A Step Forward: An Aspirational Example

• Transfer from sonnets to tweets (author is a confounder)

source

Shakespeare's sonnets Browning's sonnets Pushkin's sonnets

. . .

. . .

target

(Shakespeare's tweets) ?

Obama's tweets Bieber's tweets Perry's tweets