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Abstract

Large-scale neural language models have made impressive strides in natural language
generation. However, typical models operate in a left-to-right, unconstrained fashion
with limited control over what is generated. This thesis explores flexible sequence
models and weakly supervised methods to perform various controlled generation tasks.
We anticipate that these techniques will be broadly applicable to other domains, such
as the generation of images, molecules, and biological sequences.

We begin by presenting a class of sequence models called blank language models
(BLMs), which generate sequences by dynamically creating and filling in blanks.
Given partially specified text with one or more blanks, BLM will fill in the blanks
with a variable number of tokens consistent with the context. Our model is well
suited for a variety of text editing and rewriting tasks and demonstrates effectiveness
on text infilling, ancient text restoration, and sentiment transfer.

Next, we investigate text autoencoders and their use to control generation through
latent space operations. We establish a theory on how to mold a meaningful latent
space geometry for discrete text data. Building on this, we develop a family of
denoising text autoencoders that demonstrate the potential of attribute modification
(e.g., tense, sentiment, etc.) through simple vector arithmetic.

The final two chapters address language style transfer in the absence of supervised
data. We first formalize the task of non-parallel style transfer and discuss the fea-
sibility of the learning problem. We propose a method that leverages distributional
alignment of latent representations to perform style transfer. Then, we study con-
founding factors and show that by dividing the data into two groups of different styles,
with the sets in each group illustrating variations we do not wish to alter, we can
exploit invariance to isolate confounders and transfer text in the desired direction.

Thesis Supervisor: Tommi Jaakkola
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Building machines that can generate and communicate in human language is a long-

standing goal of artificial intelligence. In recent years, deep learning has brought

tremendous progress to language generation. Neural language models can produce

realistic text that can be difficult to distinguish from human writing [14]. Neural

machine translation is approaching the level of professional human translation and

benefiting millions of people to communicate across language barriers [30, 122, 130]

Dialogue systems are widely used as virtual assistants for various purposes such as

customer service, request routing, or information gathering [27, 141]. Moreover, cross-

modal language generation models yield impressive results in applications including

speech recognition [6] and image captioning [72].

These advancements largely attribute to architecture development and scaling up.

Early neural language models were based on recurrent neural networks (RNNs), which

sequentially perform computations along the symbol position [58, 119]. To enhance

RNNs, attention mechanisms were subsequently introduced to trace the dependencies

between symbols regardless of their distances [7, 78]. After that, the Transformer

architecture was proposed, which dispenses with recurrence and completely relies

on the attention mechanism to draw global dependencies [122]. Transformer allows

for full parallelization and demonstrates surprising scalability, sparking a trend of

improving performance by increasing model size and data volume [14, 100, 101].

However, on the other hand, there have been relatively few advances in generative

21



modeling of language in a flexible and structured way. The traditional left-to-right

language model is widely adopted, which generates each word based on the preceding

words. While this autoregressive decomposition enables simple and tractable sequence

likelihood functions, the resulting rigid generation process makes it difficult to control

what is generated and greatly limits the application of the model in many scenarios.

For example,

• We may have a beginning and an end of a story that needs to be filled in

between; or we may have a draft where certain parts need to be revised; or we

may have a template that needs to be filled out in a specific format, such as

medical and legal documents. All of these tasks require the model to start from

partially specified text – not necessarily at the beginning – and generate the

missing fragments.

• We may want to change the tense of a document from present to past, or change

the sentiment of a review from negative to positive; we may want to simplify

or expand a sentence, or gradually change from one sentence to another and

generate smooth and semantically coherent sentence interpolations. If we can

map discrete symbolic sequences into a continuous vector space and preserve

language structure there, then we could implement text manipulations through

vector operations.

• We can express the same meaning in many different ways and may want to

rewrite a sentence in a different style, such as switching between informal and

formal, between different dialects, or between different personal styles. This

requires us to disentangle content and other aspects of language and control

them independently.

In general, to achieve fine-grained control over text generation, we need to develop

not only new sequence models to explicitly represent the structure of language, but

also new methods to cope with the lack of supervised data on many tasks. This

dissertation proposes algorithms and techniques to address these challenges. Our
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contributions are orthogonal to advances in deep learning, and our methods can

generally be implemented with different architectures and scales. Below, we briefly

describe the modeling questions we are interested in and how we tackle each of them:

1.1 Generating Text at Specified Locations

To generate at specified locations with a left-to-right language model, one must use

sophisticated inference algorithms to find the infilling content that has a high proba-

bility along with the surrounding context. Previous work has attempted to solve this

highly complex combinatorial problem by making simplifying Markov assumptions

and then performing beam search in both forward and backward directions [118], or

relaxing discrete words using embedding vectors or soft distributions and then apply-

ing gradient backpropagation [73, 99]. These methods are difficult to accommodate

multiple infilling segments, need to specify the infilling length in advance, and require

high decoding time complexity.

In Chapter 2, we take a different approach and develop a new sequence model,

called the blank language model (BLM), designed for filling in any blanks in the

input text. BLM operates on a dynamic canvas consisting of words and special blank

symbols. It iteratively determines which word to place in a blank and whether to split

it into new blanks. The model can start from a single blank or partially completed

text with blanks at specified locations, and stops generating when no blanks are

left to fill. BLM can be efficiently trained using a lower bound of the marginal data

likelihood. At test time, we can simply use greedy decoding or beam search algorithms

for inference. On the task of filling missing text snippets [146], BLM significantly

outperforms all other baselines in terms of both accuracy and fluency. Experiments

on style transfer [110] and damaged ancient text restoration [4] demonstrate the

potential of this framework for a wide range of applications.

BLM can generate in a fully autoregressive manner by expanding one blank at

a time, or partially autoregressive by expanding multiple blanks at the same time.

The latter is especially useful in applications that require fast decoding speed, such as
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non-autoregressive machine translation [38, 43, 69]. Among the methods proposed for

this purpose, the Insertion Transformer [116] and the Levenshtein Transformer [45]

are most relevant to our model. Like BLM, both models iteratively modify the en-

tire sequence of incomplete text: the Insertion Transformer also supports dynamic

word insertion, but does not allow users to specify where to insert; the Levenshtein

Transformer first predicts the number of placeholders in each iteration, and then inde-

pendently replaces them with tokens. None of them perform as well for text infilling

as BLM, which jointly models context and missing content.

Apart from generating text at specified locations, it would also be interesting to

compare the language representation learning ability of BLM with other pre-training

methods. After randomly masking a portion of tokens in the input text, differ-

ent training strategies include predicting the masked tokens independently [24], out-

putting the entire original text [70], and outputting the masked tokens separated by

delimiters as a sequence [102]. Our model outperforms these models of the same scale

on text infilling. We look forward to the performance of BLM in language generation

and representation learning when scaled up.

1.2 Mapping Discrete Text to Continuous Spaces

Sentences are composed of discrete sequences of words with complex structures, and

manipulations such as tense and sentiment modification on their surface form are

difficult. Text autoencoders offer a continuous approach to manipulating sentences

via modifying their latent vector representations. The model consists of an encoder

and a decoder network, where the encoder reads a sentence and maps it into a fixed-

length vector representation, and the decoder reads the encoded representation from

the encoder and reconstructs the original sentence. The overarching goal is to learn

latent representations that uncover language structure while smoothly mapping to

the data distribution.

A popular class of generative autoencoders is the variational autoencoder (VAE),

which uses a probabilistic decoder to approximate the model posterior distribution
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and optimize a variational lower bound on the marginal data likelihood [64]. However,

when applied to text generation with a powerful autoregressive decoder, VAE suffers

from the posterior collapse problem, where the latent representation is ignored and the

model degenerates into a conventional language model [12, 19]. To combat posterior

collapse, prior work has tried weakening the decoder, such as dropping out its input

words [12] or implementing it using a convolutional network with limited window sizes

rather than accessing the full history [19, 135]. However, this results in VAEs having

worse data likelihood than conventional language models. Other mitigation strategies

include annealing the KL divergence term in the VAE objective [12], introducing skip

connections between the latent representation and the output layer [25], applying

semi-amortized variational inference [62], and adjusting the training dynamics of the

encoder and decoder networks [46]. These methods narrowly prevent the KL term

from being 0, and the reconstruction loss is still large, which means that the latent

representation encodes little information about the sentence.

In Chapter 3, we focus on another class of autoencoders called the adversarial

autoencoder (AAE) [81]. It turns an antoencoder into a generative model by using

adversarial training to match the aggregated posterior of the latent representations

with a given prior distribution [39]. AAE belongs to the more general Wasserstein

autoencoder family, which minimizes a penalized form of the Wasserstein distance

between the model and the data distributions [121]. Moreover, the AAE objective

is related to the VAE objective plus an additional term for maximizing the mutual

information between the latent representation and the sentence [144]. AAE ensures

that sufficient sentence information is encoded into the latent representation so that

it to be used for text manipulation.

Although AAE can encode sufficient sentence information into the latent repre-

sentation, it still struggles to maintain coherent latent spaces required to perform

meaningful text manipulations via latent vector operations. We demonstrate by ex-

ample that neural encoders do not necessarily map similar sentences to nearby latent

vectors. A theoretical explanation for this phenomenon establishes that high-capacity

autoencoders can learn an arbitrary mapping between sequences and associated la-
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tent representations. To remedy this issue, we augment AAE with a denoising ob-

jective [22, 123] where original sentences are reconstructed from perturbed versions

(referred to as DAAE). We prove that this simple modification guides the latent

space geometry of the resulting model by encouraging the encoder to map similar

texts to similar latent representations. In empirical comparisons with various types

of autoencoders, our model provides the best trade-off between generation quality

and reconstruction capacity. Moreover, the improved geometry of the DAAE latent

space enables zero-shot text style transfer via simple latent vector arithmetic.

1.3 Disentangling Different Aspects of Language

The goal of controlling sentence style (such as formality, genre, and personal styles)

requires us to disentangle what should be altered from orthogonal aspects of sentences

that ought to be kept intact. One way to address this disentanglement problem is

to provide parallel data, e.g., for formality transfer, to collect corresponding formal

expressions for each informal sentence [103]. However, annotating parallel examples

is too costly to collect large amounts of data. In many cases, this is even impossible.

Suppose we want to transfer between the styles of two authors, there is no parallel

data available.

In Chapter 4, we explore style transfer on the basis of non-parallel text, adapting

to real-world scenarios. This is an instance of a broad family of problems includ-

ing machine translation, decipherment, and sentiment modification. We assume a

shared latent content distribution across text corpora of different styles, and propose

a method that leverages refined alignment of latent representations to perform style

transfer. The transferred sentences from one style should match example sentences

from the other style as a population. Our cross-alignment method shows effective-

ness on three tasks: sentiment modification [52], decipherment of word substitution

ciphers [28], and recovery of word order [13].

We demonstrate one of the earliest successes of non-parallel text style transfer,

and the problem has been increasingly studied in the field since our work [56]. A
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body of work extends our method of optimizing over sequence models and introduces

additional techniques such as back-translation to enhance content preservation and

language model regularization to improve generation fluency [47, 77, 136]. Another

approach is to modify directly in the lexical form by first removing words of one style

and then completing the remaining partial sentence with words of another style [71,

113, 129]. Such methods are effective when the style and content words are clearly

separated, such as in sentiment transfer. But more often a word has both style and

content information, and therefore cannot be simply removed or retained.

In addition to the tasks tested in our experiments, style transfer applications ex-

tend to politeness transfer [79], gender style transfer [96], factual/humorous/romantic

style transfer [33], political slant transfer [124], debiasing [98], detoxification [106], etc.

To evaluate whether the output successfully transfers the style of the input, we

consider the following three criteria: transfer accuracy, content preservation, and

fluency. We can automate evaluation by using a style classifier for transfer accuracy,

computing BLEU scores or embedding based similarity for content preservation, and

using a language model for fluency [32, 66, 71]. However, automatic evaluation metrics

have inherent blind spots and need to be combined with human evaluation [71].

In certain tasks, we not only lack parallel examples, but also datasets with a

shared content distribution – the available data sources involve additional confounding

differences other than the style to be transferred. For example, when transferring

between different dialects or between sonnets and tweets, the distribution of speakers

or authors differs between styles. In Chapter 5, we look at such cases where we need

to infer the desired style from the datasets and remove confounding factors. We show

that this inference can be facilitated by dividing the data into two groups whose

primary distinction specifies the style to be transferred, and the sets within each

group illustrate confounding variations we do not wish to alter. From there, we can

first learn an invariant style classifier that removes nuisance variation [3], and then

an orthogonal classifier that highlights the confounding cues [133]. The resulting pair

of classifiers guide us to transfer text in the specified direction, creating sentences

of types not seen during training. Our experiments show that by using positive and
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negative review datasets from different categories, we can successfully transfer the

sentiment of a sentence without changing its category.

From flexible sequence modeling to rich and structured language representation

learning, these pieces of work together represent a step towards controllable text

generation. Moreover, our proposed techniques are broadly applicable to generation

problems in other domains, especially in discrete domains, such as generating biolog-

ical sequences and molecules [17, 111].
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Chapter 2

Blank Language Models

2.1 Introduction

Neural language models have shown impressive performance across many applications

such as machine translation and summarization where the text is generated from

scratch [7, 105]. However, a broader set of text generation tasks — including text

editing, information fusion, and ancient text restoration — requires the model to

start with partially specified text and generate the missing fragments. In the general

setup, the input document may have any number of missing spans, and each span

may have an unknown number of missing tokens. To perform this text infilling task

[146], a model should: (1) provide fine-grained control over the generation location,

(2) accommodate a variable number of missing tokens, and (3) respect both the

preceding and following context.

Existing approaches focus on adapting left-to-right language models for text in-

filling. Intricate inference algorithms leveraging dynamic programming or gradient

search are proposed to find the filling content that has a high likelihood within the

surrounding context [73, 118, 139]. These methods make simplified Markov assump-

tions, require high decoding time complexity, and cannot adapt to variable infilling

length. Alternatively, Donahue et al. [26] predict the concatenation of the infilling

content, but do not guarantee that the output will match the number of missing spans

in the input.
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They also have which .
They also have ice cream which is really good .

Figure 2-1: BLM fills in blanks of arbitrary length.

In this work, we introduce the Blank Language Model (BLM), which uses a special

“ ” symbol to control where tokens can be placed. The generation of BLM follows

the grammar of replacing a blank with a word and possibly adjoining blanks. By

jointly modeling context and missing content, BLM supports the control of generation

location and produces consistent infilling of variable length.

Our model can start from a single blank or partial text with blanks in specified

locations. It maps the entire input into a sequence of vector representations, and

further processes the representations in blank positions to determine the generation

action. Generation actions are performed iteratively until there are no blanks. Since

multiple trajectories of BLM actions can produce the same final text, we train the

model by maximizing a lower bound of the log-likelihood marginalized over trajecto-

ries. At test time, we can use simple greedy decoding or beam search to fill in the

blanks in the input text.

BLM shows superior performance in text infilling [146], ancient text restoration [4]

and style transfer [110], demonstrating its flexibility to generate text in diverse con-

ditions. Our model achieves 92.5% accuracy and BLEU score of 23.1 on the Amazon

dataset for sentiment transfer. On the task of restoring ancient text that lost half of

the characters, we reduce the error rate by 3.3 points compared to previous methods.

2.2 Related Work

Recent work has explored various sequence models for non-autoregressive machine

translation [43]. The Insertion Transformer supports dynamic canvas with word in-

sertion [116], but does not allow users to specify where to insert. The model is unaware

of which parts of the canvas are contiguous text spans that should remain intact, and

which (potentially scattered) parts need to be filled in. Directly forcing the Inser-

tion Transformer to perform text infilling can therefore lead to suboptimal solutions.
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The Levenshtein Transformer combines insertion and deletion through complex pol-

icy learning [45]. Its insertion mechanism is a two-stage process in which placeholders

are first predicted and then filled-in in a masked language model (MLM) manner. In

text infilling where the blanks/placeholders are given, it reduces to an MLM.

MLMs are commonly used in representation learning [24, 57]. To use them in

rewriting tasks, one needs to specify the insertion length in advance and heuristically

determine the generation order among the masks [31, 37, 125]. Similarly, XL-Net

requires absolute positional embedding and thus does not support unknown-length

text infilling [115, 134]. BLM provides a natural formulation for generative modeling

that can dynamically accommodate insertions of various length.

Another line of work focuses on finding an optimal language generation order,

such as syntax-based generation [29] and learning adaptive generation order [44].

These approaches are tailored to generation from scratch in a specific order. Our

model instead is attuned for text rewriting, where the missing parts can be located

anywhere in the input text, and the algorithm must flexibly complete them.

2.3 Blank Language Models

A blank language model (BLM) generates sequences by creating and filling in blanks.

Generation starts with a single blank and ends when there is no blank. In each step,

the model selects a blank “ ”, predicts a word 𝑤, and fills the blank with “𝑤”, “

𝑤”, “𝑤 ”, or “ 𝑤 ”. This way, a blank can be expanded to any number of words.

We define a canvas as a sequence of words interspersed with special “ ” tokens.

The subsequent action is conditioned on this intermediate stage of generation. Sup-

pose the current canvas is 𝑐 = (𝑐1, . . . , 𝑐𝑛) with blanks located at indices 𝑏1, . . . , 𝑏𝑘

(i.e. 𝑐𝑏𝑖 = “ ”, for 𝑖 = 1, . . . , 𝑘). BLM maps this canvas to a distribution over actions

specifying how the canvas is to be revised:

𝑝(𝑏, 𝑤, 𝑙, 𝑟|𝑐; 𝜃) = BLM(𝑐) (2.1)
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Canvas 𝑐 Action 𝑎
Step 𝑡 Location 𝑏 Word 𝑤 (Left blank 𝑙, Right blank 𝑟)

0. #1 #1 is Yes Yes
1. #1 is #2 #1 customer No Yes
2. customer #1 is #2 #2 awesome No No
3. customer #1 is awesome #1 service No No
4. customer service is awesome -End-

Figure 2-2: An example trajectory that generates the sentence “customer service is
awesome”. Each action is a tuple (𝑏, 𝑤, 𝑙, 𝑟), indicating the blank location 𝑏 selected
for expansion, the word 𝑤 to fill in, whether to create a left blank 𝑙, and whether to
create a right blank 𝑟.

where 𝑏 ∈ {𝑏1, . . . , 𝑏𝑘} is a blank location; 𝑤 is a word in the vocabulary 𝑉 ; 𝑙, 𝑟 ∈ {0, 1}
denote whether or not to create a blank to the left and right of 𝑤; and 𝜃 are the model

parameters. The action, defined as the tuple (𝑏, 𝑤, 𝑙, 𝑟) uniquely specifies the next

state of canvas (see Fig. 2-2 for illustration).

Alternatively, we can view the actions in BLM as production rules in a grammar.

Each blank represents a nonterminal symbol or the start symbol, and the terminal

symbols come from the vocabulary 𝑉 . The production rules are restricted to be of

the form “ ” → “ ?𝑤 ?” for 𝑤 ∈ 𝑉 , where “?” indicates that the preceding symbol

is optional. In contrast to context-free grammars, the probability distribution over

production rules in BLM is conditioned on the entire canvas generated so far.

Model Architecture We encode the canvas 𝑐 into a sequence of representations

(𝑧1, . . . , 𝑧𝑛), and take representations 𝑍 = (𝑧𝑏1 , . . . , 𝑧𝑏𝑘) where the blanks are located.

Let 𝑑 denote the dimension of 𝑧’s. We factorize the joint distribution 𝑝(𝑏, 𝑤, 𝑙, 𝑟|𝑐; 𝜃)
into three parts (shown in Fig. 2-3):

1. Choose a blank:

𝑝(𝑏𝑖|𝑐; 𝜃) = Softmax(𝑢𝑇𝑍) (2.2)

where 𝑢 ∈ R𝑑 is a parameter vector to project 𝑧’s into one-dimensional logits.
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alsoThey have ____ which ____

Transformer
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Linear & Softmax
1) Choose a blank 2) Predict a word

3) Create new blanks

Linear & 
Softmax

really

MLP

Fill and repeat

really
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really____
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Figure 2-3: Architecture of the BLM. In the first stage, an index is chosen among
all current blank positions. For that location, a word is selected in the second stage.
In the final stage, the blank representation is concatenated with the chosen word’s
embedding and fed into an MLP to determine the creation of the following blanks.

2. Predict a word for the selected blank:

𝑝(𝑤|𝑐, 𝑏𝑖; 𝜃) = Softmax(𝑊𝑧𝑏𝑖) (2.3)

where 𝑊 ∈ R|𝑉 |×𝑑 is a parameter matrix to project 𝑧𝑏𝑖 into the vocabulary.

3. Decide whether or not to create blanks to the left and right of the predicted

word:

𝑝(𝑙, 𝑟|𝑐, 𝑏𝑖, 𝑤; 𝜃) = MLP(𝑧𝑏𝑖 , 𝑣𝑤) (2.4)

where 𝑣𝑤 is the word vector of 𝑤, and MLP is a multilayer perceptron with 4

output classes: Left.Yes/No × Right.Yes/No.

Likelihood Now let us consider the probability 𝑝(𝑥; 𝜃) of generating a sentence or

paragraph 𝑥 = (𝑥1, . . . , 𝑥𝑛) under the BLM. We call the generating process from an

initial blank to complete text a trajectory. The same final text 𝑥 can be realized

by multiple trajectories. However, if we specify the order in which the words in 𝑥

are generated, the trajectory will be uniquely determined. Consider the example

trajectory of a 4-word sentence in Fig. 2-2. Given the order (3, 1, 4, 2), at step 0
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when we generate 𝑥3, both left and right blanks are created for future generations

of 𝑥1 and 𝑥2, 𝑥4. In step 1 of generating 𝑥1, only a right blank is created for the

future 𝑥2. Subsequent steps can be deduced by analogy. The correspondence between

trajectories and generation orders allows us to write the marginal likelihood as:

𝑝(𝑥; 𝜃) =
∑︁
𝜎∈𝑆𝑛

𝑝(𝑥, 𝜎; 𝜃)

=
∑︁
𝜎∈𝑆𝑛

𝑛−1∏︁
𝑡=0

𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃) (2.5)

where 𝑆𝑛 is the set of all 𝑛-permutations; 𝑎𝑥,𝜎𝑡 , 𝑐𝑥,𝜎𝑡 denote the action and canvas at

step 𝑡 under sentence 𝑥 and order 𝜎, respectively (cf. Fig. 2-2).

Training Different losses have been proposed to train generalized sequence models.

For instance, BERT and XL-Net mask and predict 15% of tokens conditioned on the

rest. This strategy is more suitable for representation learning rather than genera-

tion. Insertion Transformer masks different numbers of tokens and weights them with

uniform loss or binary tree loss [15, 116]. It aims to perform fast inference through

parallel decoding. Here, we present a training objective from the language modeling

perspective by estimating the log likelihood of generating 𝑥.

Directly computing the marginal likelihood over 𝑛! orders is intractable. We apply

Jensen’s inequality to lower bound the log likelihood:

log 𝑝(𝑥; 𝜃) = log
∑︁
𝜎∈𝑆𝑛

𝑛−1∏︁
𝑡=0

𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃)

≥ log(𝑛!) +
1

𝑛!

∑︁
𝜎∈𝑆𝑛

𝑛−1∑︁
𝑡=0

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃) (2.6)

where equality holds when the posterior 𝑝(𝜎|𝑥; 𝜃) is uniform. By maximizing this lower

bound, we do not favor any particular order, but encourage the model to realize 𝑥

equally well in all orders. It can help the model to complete any partial input text

regardless of the position of blanks.
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Algorithm 1 BLM training1

1: Initialize model parameters 𝜃
2: repeat
3: Sample a training example 𝑥 = (𝑥1, . . . , 𝑥𝑛)
4: Sample 𝑡 from 0 to 𝑛− 1
5: Sample an 𝑛-permutation 𝜎
6: Construct canvas 𝑐 that keeps tokens 𝑥𝜎𝑗

(𝑗 = 1, . . . , 𝑡) and collapses remaining
tokens as blanks

7: Get 𝑛− 𝑡 target actions 𝑎𝑗−𝑡 for filling 𝑥𝜎𝑗
(𝑗 = 𝑡+ 1, . . . , 𝑛) into canvas 𝑐

8: Compute loss({𝑎1, . . . , 𝑎𝑛−𝑡},model.forward(𝑐)) from Eq. (2.8)
9: Update 𝜃 by gradient descent

10: until Convergence

A naive training algorithm is to directly estimate the lower bound in Eq. (2.6): first

uniformly sample a permutation 𝜎 from 𝑆𝑛 and a step 𝑡 from 0 to 𝑛−1, then construct

the canvas 𝑐𝑥,𝜎𝑡 , and compute the estimated loss [− log(𝑛!)− 𝑛 · log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃)].

However, this procedure has a large variance and can only compute the loss of a

single action in one pass (in contrast to left-to-right language models that compute

𝑛 word losses per pass).

To train the model more efficiently, we note that the canvas 𝑐𝑥,𝜎𝑡 depends only on

the first 𝑡 elements of 𝜎. Hence we can combine into one pass the loss calculations

of trajectories that are the same in the first 𝑡 steps but different at the 𝑡 + 1 step.

Switching the summation order of 𝜎 and 𝑡, we have:

𝑛−1∑︁
𝑡=0

1

𝑛!

∑︁
𝜎∈𝑆𝑛

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃)

= 𝑛 · E𝑡E𝜎1:𝑡E𝜎𝑡+1E𝜎𝑡+2:𝑛 [log 𝑝(𝑎
𝑥,𝜎
𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃)]

= 𝑛 · E𝑡E𝜎1:𝑡E𝜎𝑡+1 [log 𝑝(𝑎
𝑥,𝜎
𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃)]

= E𝑡E𝜎1:𝑡

[︃
𝑛

𝑛− 𝑡

∑︁
𝜎𝑡+1

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃)

]︃
(2.7)

which leads to our efficient training algorithm: sample 𝑡 from 0 to 𝑛− 1 and partial

1We implement a batch version of the algorithm.
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They also have which .
They also have ice cream which is really good .

τε εγγονον εισαι? ? ? ? ? ? ?σοφιαι

τε εγγονον εισαιου του σοφιαι

The employees were super nice and efficient !
The employees were rude and unprofessional !

Figure 2-4: Examples of input and output for text infilling, ancient text restoration,
and style transfer tasks.

permutation 𝜎1:𝑡, construct the canvas 𝑐𝑥,𝜎𝑡 , and compute loss:

− log(𝑛!)− 𝑛

𝑛− 𝑡

∑︁
𝜎𝑡+1

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐𝑥,𝜎𝑡 ; 𝜃) (2.8)

The whole process is illustrated in Algorithm 1. In this way, we can compute in

expectation 𝑛/2 action losses per pass.

2.4 Experiments

We test BLM’s capacity to rewrite specified portions of text on three tasks: text

infilling [146], ancient text restoration [4], and style transfer [110]. Fig. 2-4 displays

example inputs and outputs for these tasks. We also measure the perplexity of BLM

on language modeling benchmarks and compare with traditional left-to-right language

models.

Experimental Details In all experiments, the sequence representations in BLM

are obtained using the encoder module of transformer_base [122] (6 layers, 8 heads,

𝑑𝑚𝑜𝑑𝑒𝑙 = 512, 𝑑𝑓𝑓 = 2048, 𝑑𝑘 = 𝑑𝑣 = 64). The MLP used for blank prediction has one

hidden layer of size 1024. Weight decay, learning rate, and dropout are tuned based

on the loss on the validation set for each dataset respectively. When decoding, we

use beam size in {1, 5, 10} and choose the best value as observed on the validation

set. We note that beam search in BLM does not search for the sentence with the
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maximum marginal likelihood 𝑝(𝑥; 𝜃), but instead for a sentence and a trajectory that

have the maximum joint likelihood 𝑝(𝑥, 𝜎; 𝜃).

2.4.1 Text Infilling

Dataset We experiment on the Yahoo Answers dataset, which has 100K/10K/10K

documents for train/valid/test respectively [135]. A document has a maximum length

of 200 words, with an average of 78 words. Following Zhu et al. [146], we automati-

cally compile test data by deleting portions of documents. For each document 𝑥, we

randomly mask a given ratio 𝑟 of its tokens. Contiguous masked tokens are collapsed

into a single “ ”, resulting in a canvas 𝑐 to be completed.

Metrics We measure generation’s accuracy by computing its BLEU score against

the original document 𝑥, and fluency as its perplexity evaluated by a pre-trained (left-

to-right) language model. We also report the failure rate, which is the percentage of

invalid generations, such as missing existing words or not filling in all the blanks.

Baselines We compare BLM with five baselines:

• Insertion Transformer (InsT): By default, InsT does not support controlling the

insertion position. We force it to produce valid generations by normalizing the

predictions over valid locations, disabling the ⟨eos⟩ prediction unless all blanks

have been filled, and prioritizing slots that have not been filled yet. Without

these steps, InsT would have a failure rate ≥ 88%.

• MLM (oracle length): MLM for text infilling requires predicting the length of

each blank. Here we replace blanks with the target number of ⟨mask⟩ tokens,

and fill them autoregressively by the most-confident-first heuristic.

• BERT+LM : We use BERT’s representation of each blank as seed for a left-to-

right language model that learns to generate the tokens in the corresponding

blank. At inference time, the multiple blanks are filled in one after another,

conditioned on previous generations.
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• Seq2seq-full [26]: We train a seq2seq model to output the full document 𝑥 from

input 𝑐. Note that it may have invalid outputs that do not match the input

format, such as missing existing tokens in 𝑐 or generating tokens in incorrect

locations.

• Seq2seq-fill [26]: We train a seq2seq model to output only tokens to be placed

in the blanks, with a special ‘|’ token to indicate separation. For the example in

Fig. 2-4, its target output will be “ice cream |is really good”. Unlike seq2seq-full,

seq2seq-fill does not have the problem of losing existing tokens in 𝑐. However,

it may still fail to generate the correct number of ‘|’ that matches the input.

Results As shown in Table 2.1, BLM achieves the highest BLEU score at all mask

ratios: 0.7 to 1.7 higher than InsT, 2.6 to 4.1 higher than MLM with oracle length,

and 3.7 to 9.4 higher than BERT+LM. InsT is not trained with insertion position

control. Restricting it to generate at the specified positions thus biases the model

towards making suboptimal completions. MLM is trained to independently predict

masked tokens instead of jointly modeling them. Even with the target number of

⟨mask⟩ tokens given, its performance is still inferior to BLM. BERT+LM lags behind

other models. In BERT training, one mask corresponds to one token, whereas a blank

here can cover multiple tokens, and the distance between words is not fixed. Hence,

it is difficult for the LM to complete the sentence from BERT representations.

Seq2seq-full has BLEU scores closest to BLM. However, its failure rate ranges from

15% to 40.6% as the mask ratio increases. Seq2seq-fill performs worse than Seq2seq-

full, possibly because the decoder has to model segmented text while counting the

number of blanks.

In terms of fluency, outputs of BLM, InsT and Seq2seq-full all have perplexity

lower than original data perplexity. This is because with beam search, models tend

to generate the most typical output with the highest likelihood [50].

Examination of model generations confirms the superiority of BLM. In Fig. 2-5,

we showcase example outputs by each model at different mask ratios. In low mask

ratio settings, models only need to fill in the blanks with a single word to produce
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Table 2.1: BLEU scores and perplexity of generated documents by different models
for text infilling. The perplexity is measured by a pre-trained left-to-right language
model, and the original documents have perplexity 55.8.

BLEU PPL

Mask ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

No infill 75.2 55.0 37.4 23.6 13.0 98.4 163.0 266.3 421.0 647.9

InsT 84.8 72.3 58.9 46.0 33.8 48.3 44.2 41.8 39.7 37.7
MLM (oracle length) 83.7 69.3 55.5 43.2 32.2 58.4 59.8 59.8 59.0 56.8
BERT+LM 82.8 66.3 50.3 37.4 26.2 55.1 55.2 54.9 56.5 53.6
Seq2seq-full 86.3 72.9 59.4 46.3 34.0 51.3 46.9 41.0 31.9 20.6
Seq2seq-fill 82.8 67.5 52.9 39.9 28.6 64.6 71.0 73.4 65.6 48.7

BLM 86.5 73.2 59.6 46.8 34.8 50.2 44.9 39.9 35.0 32.7

Table 2.2: Infilling failure rate (%) of seq2seq models. Other methods always produce
valid outputs.

Mask ratio 10% 20% 30% 40% 50%

Seq2seq-full 15.0 22.4 28.7 33.3 40.6
Seq2seq-fill 31.0 28.4 34.5 42.5 47.2

grammatical completions. Most models succeed in this task. With a higher mask

ratio of 50%, the main ideas of the document are concealed, and the infilling task

is much more challenging. Models need to creatively generate sentences that fit the

imposed canvas. Although the original meaning of the sentence is not recovered, BLM

is the only model able to produce a coherent document with consistency between the

question and the answer.

Overall, BLM displays the best performance both quantitatively and qualitatively.

Its inherent text infilling ability frees it from length, order, or termination heuristics

used by other methods.
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Mask-ratio 10%

Blanked when time flies , does it go ? the center of the to be recycled
made into new time .

BLM when time flies , where does it go ? for the center of the earth to be recycled
and made into new time .

InsT when time flies , where does it go ? for the center of the earth has to be recycled
and made into new time .

MLM
(oracle len)

when time flies , where does it go ? from the center of the earth to be recycled
converted made into new time .

BERT+LM when time flies , where does it go ? to the center of the earth to be recycled
came made into new time .

Seq2seq-full when time flies , where does it go ? at the center of the earth to be recycled and
made into new time .

Seq2seq-fill when time flies , how does it go ? at the center of the earth to be recycled and
made into new time .
how |at |earth |and

Original when time flies , where does it go ? to the center of the universe to be recycled
and made into new time .

Mask-ratio 50%

Blanked when time , where ? the of universe to recycled
made into .

BLM when time was created , where did it come from ? it was the first part of the
universe to be recycled and made into space .

InsT when time was created , where was it ? what was the name of the universe to be
recycled and made into space .

MLM
(oracle len)

when time is , where is the universe ? from the creation of the universe to be
recycled and made into the universe .

BERT+LM when time is , where to ? i need to find the way of the universe to be recycled
and made into a lot .

Seq2seq-full when time heals , where does it go ? it ’s the end of the universe to be recycled
and made into space .

Seq2seq-fill when time is time , where is time ? time is the time of time universe to the
recycled be made into and . the universe
is time |is time |time is |time |time |the |be |and |the universe

Original when time flies , where does it go ? to the center of the universe to be
recycled and made into new time .

Figure 2-5: Example generations of different models for text infilling on Yahoo An-
swers. Completions are in italic. Invalid completions are in red. For Seq2seq-fill, we
present model outputs along with the merged document.

40



2.4.2 Ancient Text Restoration

Ancient text restoration is a form of text infilling where there are fragments in ancient

documents that are illegible due to time-related damages and need to be recovered.

Assael et al. [4] introduces the PHI-ML dataset made of fragments of ancient Greek

inscriptions. Restoration is performed at the character-level. The number of charac-

ters to recover is assumed to be known and indicated by a corresponding number of

‘?’ symbols, as shown in the second row of Fig. 2-4. In reality, when epigraphists re-

store a deteriorated document, the length of the lost fragment is unknown and needs

to be guessed as a first step. While models proposed by Assael et al. [4] relies on

expert conjectures, we note that BLM can bypass this limitation and flexibly gen-

erate completions without this additional knowledge. However, in order to compute

the character error rate (CER) for each ’?’ and have a fair comparison with previous

work, we evaluate our model in the length-aware setting.

Length-aware BLM (L-BLM) We present a variant of BLM adapted to the

specific features of this task. The vocabulary 𝑉 is an alphabet of characters from the

ancient Greek language. We extend 𝑉 with special “ [𝑡] ” tokens that denote the

length of the fragment to recover. Specifically, as a preprocessing step, consecutive

‘?’ characters are collapsed into a single “ [𝑡] ” token, where 𝑡 is the number of

‘?’ symbols. For each such blank token, L-BLM is trained to predict a character to

fill in and the length 𝑙 ∈ {0, . . . , 𝑡− 1} of the new blank to its left. The length of the

new blank on the right is accordingly 𝑡− 1− 𝑙.

Dataset The PHI-ML dataset contains about 3 million words / 18 million charac-

ters. We evaluate models in two settings: single-slot and multi-slot. For the single-slot

setting, we use the testing script of Assael et al. [4] which samples a context of length

𝐿 = 1000 from an inscription, then samples a slot of length 𝐶 ∈ [1, 10] from that

context. The characters from the slot are replaced with ‘?’ and constitute the target.

For the multi-slot setting, we progressively increase the number of slots, yielding mask

ratios of 25%, 40% and 50% respectively.
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Table 2.3: CER for ancient text restoration.

Single-slot Multi-slot

Mask ratio 1% 25% 40% 50%

Human 57.3% - - -
Pythia 32.5% - - -
Pythia-Word 29.1% 36.9% 42.3% 44.9%

L-BLM 33.7% 37.1% 37.9% 41.6%

Baselines Assael et al. [4] proposed two models: Pythia, a character-level seq2seq-

based approach; and Pythia-Word, a variant of Pythia that uses both character and

word representations as input. During training, the model learns to recover the

missing characters of examples where a random slot has been masked. When testing

on the multi-slot setting, Pythia(-Word) is applied iteratively with beam size 20 for

each slot.

Results Table 2.3 summarizes the CER of all models in both settings. L-BLM

achieves similar CER as Pythia in the single-slot setting, significantly outperform-

ing human experts. Augmented with word representations, Pythia-Word further de-

creases the error rate compared to character-only methods.

In reality, restoring damaged inscriptions requires reconstructing multiple lost

fragments. As a larger proportion of text is missing, Pythia-Word’s performance is

degraded. L-BLM is robust to the setting change and outperforms Pythia-Word at

the mask ratio of 40% and 50% by 4.4 and 3.3 points, respectively. We posit that L-

BLM’s advantage lies in its ability to maximize the joint likelihood of the completions

over all slots. In contrast, Pythia-Word’s is only aware of one slot at a time, and beam

search is performed locally within each slot.

2.4.3 Sentiment Transfer

The goal of sentiment transfer is to modify the sentiment of a sentence while main-

taining its topic [110]. An example is described on the third row of Fig. 2-4. Inspired

by the way humans perform rewriting, we follow a recent line of work in style transfer
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Table 2.4: Accuracy and BLEU scores for style transfer.

Yelp Amazon

ACC BLEU ACC BLEU

Li et al. [71] 88.7 8.4 48.0 22.8
Zhang et al. [142] 96.6 22.8 84.1 33.9
Wu et al. [128] 91.5 29.9 40.2 41.9
M&I with MLM 41.5 15.9 31.2 32.1

+ classifier 97.3 14.1 75.9 28.5

M&I with BLM 79.6 21.9 52.0 24.7
+ classifier 96.5 21.5 92.5 23.1

that adopts a two-step approach [71, 129, 131]:

1. Remove words and expressions of high polarity from the source sentence;

2. Complete the partial sentence with words and expressions of the target senti-

ment.

Specifically, we adapt the Mask-And-Infill (M&I) framework of Wu et al. [129].

We perform Step 1 by training a Bi-LSTM sentiment classifier and masking words

whose attention weight is above average. We evaluate the contribution of our model

as an infilling module in Step 2 in place of their fine-tuned BERT model. To this end,

we train two instances of BLM on the dataset, one for each sentiment. At test time,

the corresponding BLM is used to produce completions of the target sentiment.

Wu et al. [129] further train the infilling model with the classifier to improve

transfer accuracy. They use soft words relaxation to backprop gradients from the

classifier to the generator. For BLM, however, we cannot pick locations or insert

blanks as “soft” choices, making it challenging to employ a classifier at training time.

Nevertheless, we can easily apply the classifier to guide inference. We sample 10

outputs and keep the one with the highest classifier ranking. It is not slower than

beam search with size 10 and can be fully parallelized.

Datasets We test on the Yelp and Amazon review datasets [71, 110]. The Yelp

dataset has 450K/4K/1K non-parallel sentences for train/valid/test respectively, and
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everyone that i spoke with was very helpful and kind .
everyone that i spoke with was rude and unprofessional .
everyone that i spoke with wasn’t helpful or kind.

the beans were in the burro in the rice was nowhere to be found .
the beans were in the burro in the rice was the best i found .
the beans were in the burro and the rice was plentiful

there is definitely not enough room in that part of the venue .
there is always enough parking in that part of the venue .
there is so much room in that part of the venue

it is n’t terrible , but it is n’t very good either .
it is n’t fancy , but it is still very good either .
it is n’t perfect , but it is very good .

Figure 2-6: Example generations by BLM for sentiment transfer on Yelp. The first
line is the source sentence with masked words in bold. The second line is BLM’s
completion. The third line is a human reference.

the Amazon dataset has 555K/2K/1K sentences. Each sentence is labeled as either

positive or negative.

Metrics We use evaluation methods introduced by prior work [71, 110]. To assess

the accuracy of generated sentences with respect to the target sentiment, we use

a pretrained CNN classifier that achieves 97.7% accuracy on the Yelp dataset and

82.2% accuracy on the Amazon dataset. We also measure the BLEU score between

transferred sentences and human references.

Results In Table 2.4, we can see that directly applying BLM as the infilling module

is significantly better than MLM. The accuracy on Yelp and Amazon datasets is in-

creased by 38.1% and 20.8%, respectively. In addition to the aforementioned problem

of MLM being trained to predict masked tokens independently, it must generate the

same number of tokens as in the source sentence, whereas our BLM formulation is

not subject to this constraint. Our simple use of a classifier at inference time further

improves accuracy. It achieves the highest accuracy of 92.5% on Amazon with a small

decrease in BLEU, indicating that BLM can easily find high-quality outputs.

In Fig. 2-6, we show examples generated by BLM on Yelp. It can dynamically
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Table 2.5: The estimated perplexity of BLM with the number of Monte-Carlo samples
on WikiText-103.

#MC samples 1 10 100 1000

Estimated PPL 46.3 44.4 43.3 42.5

adapt to the imposed canvas and fill in blanks with expressions of varied lengths, e.g.,

“nowhere to be found” → “the best i found” and “definitely not” → “always”. We

note that failure cases arise when negative words like “either” are left unmasked; BLM

is then unable to produce satisfactory outputs from the canvas.

2.4.4 Language Modeling

Language modeling is a special case of text infilling where sequences are generated

from scratch. Traditional left-to-right models dominate this task, but are not suitable

for text infilling. Conversely, unconventional sequence models are rarely evaluated on

language modeling. Here, we study the perplexity of BLM and Insertion Transformer,

and compare them with left-to-right language models to provide additional insights.

We use the Monte-Carlo method to estimate the likelihood in Eq. (2.5) with 𝑚

samples. While the estimate is unbiased, given that per-word perplexity is a convex

function of per-sentence likelihood, sampling estimates like ours are likely yielding

a value higher than the actual perplexity (see Appendix A.2 for a proof). As 𝑚

increases, it converges to the actual perplexity.

Datasets We test on three benchmark datasets: Penn Treebank (PTB) which has

about 1M tokens [84], WikiText-2 (WT2) which has 2M tokens, and WikiText-103

(WT103) which has 103M tokens [82].

Results Table 2.5 shows the trend of estimated PPL with the number of samples

𝑚. We choose 𝑚 = 1000 in our evaluation, which is close to convergence. Ta-

ble 2.6 summarizes the perplexity of our model in comparison with previous work.

The top results are achieved by the Transformer-XL [23] and the adaptive embed-
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Table 2.6: Perplexity on the PTB and WikiText datasets.

PTB WT-2 WT-103

LSTM [41] 82.3 99.3 48.7
TCN [8] 88.7 - 45.2
AWD-LSTM [83] 57.3 65.8 -
Transformer [23] - - 30.1
Adaptive [5] - - 18.7
Transformer-XL [23] 54.5 - 18.3

InsT (our implementation) 77.3 91.4 39.4
BLM 69.2 81.2 42.5

ding method [5]. They use larger model sizes and supplementary techniques that can

also be combined with our model. BLM rivals the Insertion Transformer and outper-

forms left-to-right language models with LSTM and Temporal Convolutional Network

(TCN) architecture. Language modeling seems to still be challenging for free-order

models. By reporting the perplexity of unconventional models like BLM, we hope

to stimulate future work in this area to close the performance gap with traditional

left-to-right models.

2.5 Conclusion

In this paper, we proposed the Blank Language Model for flexible text generation.

Given partially specified text with one or more blanks, BLM will fill in the blanks

with a variable number of tokens consistent with the context. We demonstrate the

effectiveness of our model on various text rewriting tasks, including text infilling,

ancient text restoration and style transfer.

The action of BLM consists of selecting a blank and replacing it with a word

and possibly adjoining blanks. We train BLM by optimizing a lower bound on the

marginal data likelihood that sums over all possible generation trajectories. In this

way, we encourage the model to realize a sentence equally well in all orders, which is

suitable for filling arbitrary blanks. Appendix A.3 shows examples generated by BLM

along with their trajectories. Depending on the application, we could also train the
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model to generate in specific orders by placing higher weights on the corresponding

trajectories.

BLM has plenty of future applications, including template filling, information

fusion, assisting human writing, etc. Moreover, we can extend our formulation to

a conditional generative model. Such models can be used in machine translation to

support editing and refining translation, as well as in dialogue systems to compose

a complete sentence with given elements. While we proposed BLM for language

generation, it would also be interesting to compare the representations learned by

BLM with those produced by other pre-training methods.

47



48



Chapter 3

Denoising Text Autoencoders

3.1 Introduction

Autoencoder-based generative models have become popular tools for advancing con-

trollable text generation such as style or sentiment transfer [12, 52, 110, 143]. By

representing sentences as vectors in a latent space, these models offer an attractive

continuous approach to manipulating text by means of simple latent vector arith-

metic. However, the success of such manipulations rests heavily on the geometry of

the latent space representations and its ability to capture underlying sentence seman-

tics. We discover that without additional guidance, fortuitous geometric alignments

are unlikely to arise, shedding light on challenges faced by existing methods.

In this work, we focus on the latent space geometry of adversarial autoencoders [81,

AAEs]. In contrast to variational autoencoders [64, VAEs], AAEs maintain a strong

coupling between their encoder and decoder, ensuring that the decoder does not

ignore sentence representations produced by the encoder [12]. The training objective

for AAEs consists of two parts: the ability to reconstruct sentences and an additional

constraint that the sentence encodings follow a given prior distribution (typically

Gaussian). We find that these objectives alone do not suffice to enforce proper latent

space geometry: in a toy example with clustered data sequences, a perfectly-trained

AAE undesirably mixes different clusters in its latent space (Figure 3-1, Left).

We provide a theoretical explanation for this phenomenon by analyzing high-
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Figure 3-1: Latent representations learned by AAE and DAAE when mapping clus-
tered sequences in 𝒳 = {0, 1}50 to 𝒵 = R2. The training data stem from 5 underlying
clusters, with 100 sequences sampled from each (colored accordingly by cluster iden-
tity).

capacity encoder/decoder networks in modern sequence models. For discrete objects

such as sentences where continuity assumptions no longer hold, powerful AAEs can

learn to map training sentences to latent prior samples arbitrarily, while retaining

perfect reconstruction. In such cases, even minimal latent space manipulations can

yield random, unpredictable changes in the resulting text.

To remedy this issue, we augment AAEs with a simple denoising objective [22,

123], requiring perturbed sentences (with random words missing) to be reconstructed

back to their original versions. We prove that disorganized encoder-decoder mappings

are suboptimal under the denoising criterion. As a result, the denoising AAE model

(or DAAE for short) will map similar sentences to similar latent representations. Em-

pirical studies confirm that denoising promotes sequence neighborhood preservation,

consistent with our theory (Figure 3-1, Right).

Our systematic evaluations demonstrate that DAAE maintains the best trade-off

between producing high-quality text vs. informative sentence representations. We

further investigate the extent to which text can be manipulated via simple trans-

formations of latent representations. DAAE is able to perform sentence-level vector

arithmetic [85] to change the tense or sentiment of a sentence without any supervision

during training. Denoising also helps produce higher quality sentence interpolations,

suggesting better linguistic continuity in its latent space.
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3.2 Related Work

Denoising Vincent et al. [123] first introduced denoising autoencoders (DAEs) to

learn robust image representations, and Creswell and Bharath [22] applied DAAEs

to generative image modeling. Previous analysis of denoising focused on continuous

image data and single-layer networks [95]. Here, we demonstrate that input per-

turbations are particularly useful for discrete text modeling with powerful sequence

networks, as they encourage preservation of data structure in latent space represen-

tations.

Variational Autoencoder (VAE) Apart from AAE that this paper focuses on,

another popular latent variable generative model is VAE [64]. Unfortunately, when

the decoder is a powerful autoregressive model (such as a language model), VAE suf-

fers from the posterior collapse problem where the latent representations are ignored

[12, 19]. If denoising is used in conjunction with VAE [53] in text applications, then

the noisy inputs will only exacerbate VAE’s neglect of the latent variable. Bowman

et al. [12] proposed to dropout words on the decoder side to alleviate VAE’s col-

lapse issue. However, even with a weakened decoder and other techniques including

KL-weight annealing and adjusting training dynamics, it is still difficult to inject sig-

nificant content into the latent code [46, 62, 135]. Alternatives like the 𝛽-VAE [48]

appear necessary.

Controllable Text Generation Previous work has used autoencoders trained

with attribute label information to control text generation [52, 77, 110, 117]. We

show that the proposed DAAE can perform text manipulations despite being trained

in a completely unsupervised manner without any labels. This suggests that on the

one hand, our model can be adapted to semi-supervised learning when a few labels

are available. On the other hand, it can be easily scaled up to train one large model

on unlabeled corpora and then applied for transferring various styles.
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3.3 Methods

Define 𝒳 = 𝒱𝑚 as the sentence space of sequences of discrete symbols from vocab-

ulary 𝒱 (with length ≤ 𝑚), and let 𝒵 = R𝑑 denote a continuous space of latent

representations. Our goal is to learn a mapping between a data distribution 𝑝data(𝑥)

over 𝒳 and a given prior distribution 𝑝(𝑧) over latent space 𝒵. Such a mapping allows

us to manipulate discrete data through its continuous latent representation 𝑧, and

provides a generative model whereby new data can be sampled by drawing 𝑧 from

the prior and then mapping it to the corresponding sequence in 𝒳 .

Adversarial Autoencoder (AAE) The AAE involves a deterministic encoder

𝐸 : 𝒳 → 𝒵 mapping from data space to latent space, a probabilistic decoder 𝐺 :

𝒵 → 𝒳 that generates sequences from latent representations, and a discriminator

𝐷 : 𝒵 → [0, 1] that tries to distinguish between encodings of data 𝐸(𝑥) and samples

from 𝑝(𝑧). Both 𝐸 and 𝐺 are recurrent neural nets (RNNs).1 𝐸 takes input sequence

𝑥 and uses the final RNN hidden state as its encoding 𝑧. 𝐺 generates a sequence 𝑥

autoregressively, with each step conditioned on 𝑧 and symbols emitted in preceding

steps. 𝐷 is a feed-forward net that infers the probability of 𝑧 coming from the prior

rather than the encoder. 𝐸, 𝐺 and 𝐷 are trained jointly with a min-max objective:

min
𝐸,𝐺

max
𝐷

ℒrec(𝜃𝐸, 𝜃𝐺)− 𝜆ℒadv(𝜃𝐸, 𝜃𝐷) (3.1)

with:

ℒrec(𝜃𝐸, 𝜃𝐺) = E𝑝data(𝑥)[− log 𝑝𝐺(𝑥|𝐸(𝑥))] (3.2)

ℒadv(𝜃𝐸, 𝜃𝐷) = E𝑝(𝑧)[− log𝐷(𝑧)] +

E𝑝data(𝑥)[− log(1−𝐷(𝐸(𝑥)))] (3.3)

1We also tried Transformer models [122], but they did not outperform LSTMs on our moderate-
size datasets.
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where reconstruction loss ℒrec and adversarial loss2 ℒadv are weighted via hyperpa-

rameter 𝜆 > 0 during training.

Denoising Adversarial Autoencoder (DAAE) We extend the AAE by intro-

ducing local 𝑥-perturbations and requiring reconstruction of each original 𝑥 from a

randomly perturbed version. As we shall see, this implicitly encourages similar se-

quences to map to similar latent representations, without requiring any additional

training objectives. Specifically, given a perturbation process 𝐶 that stochastically

corrupts 𝑥 to some nearby �̃� ∈ 𝒳 , let 𝑝(𝑥, �̃�) = 𝑝data(𝑥)𝑝𝐶(�̃�|𝑥) and 𝑝(�̃�) =
∑︀

𝑥 𝑝(𝑥, �̃�).

The corresponding DAAE training objectives are:

ℒrec(𝜃𝐸, 𝜃𝐺) = E𝑝(𝑥,�̃�)[− log 𝑝𝐺(𝑥|𝐸(�̃�))] (3.4)

ℒadv(𝜃𝐸, 𝜃𝐷) = E𝑝(𝑧)[− log𝐷(𝑧)] +

E𝑝(�̃�)[− log(1−𝐷(𝐸(�̃�)))] (3.5)

Here, ℒrec is the loss of reconstructing 𝑥 from �̃�, and ℒadv is the adversarial loss

evaluated using perturbed �̃�. This objective simply combines the denoising technique

with AAE [22, 123], resulting in the denoising AAE (DAAE) model.

Let 𝑝𝐸(𝑧|𝑥) denote the encoder distribution (for a deterministic encoder it is con-

centrated at a single point). With perturbation process 𝐶, the posterior distributions

of the latent representations are of the form:

𝑞(𝑧|𝑥) =
∑︁
�̃�

𝑝𝐶(�̃�|𝑥)𝑝𝐸(𝑧|�̃�) (3.6)

This enables the DAAE to utilize stochastic encodings even by merely employing a

deterministic encoder network trained without any reparameterization-style tricks.

Note that since 𝑞(𝑧|𝑥) of the form (3.6) is a subset of all possible conditional distri-

butions, our model is still minimizing an upper bound of the Wasserstein distance

2We actually train 𝐸 to maximize log𝐷(𝐸(𝑥)) instead of − log(1 − 𝐷(𝐸(𝑥))), which is more
stable in practice [39]. We also tried the alternative WGAN objective [2] but did not notice any
gains.
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between data and model distributions, as previously shown by Tolstikhin et al. [121]

for AAE (see Appendix B.1 for a full proof).

3.4 Latent Space Geometry

Denoising was previously viewed as a technique to help learn data manifolds and ex-

tract more robust representations [10, 123], but there has been little formal analysis

of precisely how it helps. Here, we show that denoising guides the latent space geom-

etry of text autoencoders to preserve neighborhood structure in data. By mapping

similar text to similar representations, we can perform smoother sentence interpola-

tion and can better implement meaningful text manipulations through latent vector

operations.

3.4.1 A Toy Example

We pose the following question: In practice, will autoencoders learn a smooth and

regular latent space geometry that reflects the underlying structure of their training

data? To study this, we conduct experiments using synthetic data with a clear cluster

structure to see if the clusters are reflected in the learned latent representations.

We randomly sample 5 binary (0/1) sequences of length 50 to serve as cluster cen-

ters. From each cluster, 100 sequences are sampled by randomly flipping elements of

the center sequence with a probability of 0.2. The resulting dataset has 500 sequences

from 5 underlying clusters, where sequences stemming from the same cluster typically

have many more elements in common than those from different clusters. We train

AAE and DAAE models with a latent dimension of 2, so the learned representations

can be drawn directly. Similar results were found using a higher latent dimension and

visualizing the representations with t-SNE (see Appendix B.2).

In terms of its training objectives, the AAE appears very strong, achieving perfect

reconstruction on all data points while keeping the adversarial loss around the maxi-

mum −2 log 0.5 (when 𝐷 always outputs probability 0.5). However, the left panel of

Figure 3-1 reveals that, although they are well separated in the data space, different
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clusters become mixed together in the learned latent space. This is because that

for discrete objects like sequences, neural networks have the capacity to map similar

data to distant latent representations. With only the autoencoding and latent prior

constraints, the AAE fails to learn proper latent space geometry that preserves the

cluster structure of data.

We now train our DAAE model using the same architecture as the AAE, with

perturbations 𝐶 that randomly flip each element of 𝑥 with probability 𝑝 = 0.2.3 The

DAAE can also keep the adversarial loss close to its maximum, and can perfectly

reconstruct the data at test time when 𝐶 is disabled, indicating that training is not

hampered by our perturbations. Moreover, the DAAE latent space closely captures

the underlying cluster structure in the data, as depicted in the right panel of Figure 3-

1. By simply introducing local perturbations of inputs, we are able to ensure similar

sequences have similar representations in the trained autoencoder.

3.4.2 Theoretical Analysis

In this section, we provide theoretical explanations for our previous findings. We

formally analyze which type of 𝑥-𝑧 mappings will be learned by AAE and DAAE,

respectively, to achieve global optimality of their training objectives. We show that a

well-trained DAAE is guaranteed to learn neighborhood-preserving latent representa-

tions, whereas even a perfectly-trained AAE model may learn latent representations

whose geometry fails to reflect similarity in the 𝒳 space (all proofs are relegated to

the appendix).

We study high-capacity encoder/decoder networks with a large number of pa-

rameters, as is the case for modern sequence models [24, 101, 107]. Throughout, we

assume that:

Assumption 1. The encoder 𝐸 is unconstrained and capable of producing any map-

ping from 𝑥’s to 𝑧’s.

3We observed similar results for 𝑝 = 0.1, 0.2, 0.3.
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Assumption 2. The decoder 𝐺 can approximate arbitrary 𝑝(𝑥|𝑧) so long as it re-

mains sufficiently Lipschitz continuous in 𝑧. Namely, there exists 𝐿 > 0 such that

all decoders 𝐺 obtainable via training satisfy: ∀𝑥 ∈ 𝒳 ,∀𝑧1, 𝑧2 ∈ 𝒵, | log 𝑝𝐺(𝑥|𝑧1) −
log 𝑝𝐺(𝑥|𝑧2)| ≤ 𝐿‖𝑧1 − 𝑧2‖. (We denote this set of decoders by 𝒢𝐿.)

The latter assumption that 𝐺 is Lipschitz in its continuous input 𝑧 follows prior

analysis of language decoders [87]. When 𝐺 is implemented as a RNN or Transformer

language model, log 𝑝𝐺(𝑥|𝑧) will remain Lipschitz in 𝑧 if the recurrent or attention

weight matrices have bounded norm, which is naturally encouraged by regularization

arising from explicit ℓ2 penalties and implicit effects of SGD training [140]. Note we

have not assumed 𝐸 or 𝐺 is Lipschitz in 𝑥, which would be unreasonable since 𝑥

represents discrete text, and when a few symbols change, the decoder likelihood for

the entire sequence can vary drastically (e.g., 𝐺 may assign a much higher probability

to a grammatical sentence than an ungrammatical one that only differs by one word).

We further assume an effectively trained discriminator that succeeds in its adver-

sarial task:

Assumption 3. The discriminator 𝐷 ensures that the latent encodings 𝑧1, . . . , 𝑧𝑛 of

training examples 𝑥1, . . . , 𝑥𝑛 are indistinguishable from prior samples 𝑧 ∼ 𝑝(𝑧).

In all the experiments we have done, training is very stable and the adversarial loss

remains around −2 log 0.5, indicating that our assumption holds empirically. Under

Assumption 3, we can directly suppose that 𝑧1, . . . , 𝑧𝑛 are actual samples from 𝑝(𝑧)

which are fixed a priori. Here, the task of the encoder 𝐸 is to map the given training

examples to the given latent points, and the goal of the decoder 𝑝𝐺(·|·) is to maximize

−ℒrec under the encoder mapping. The question now is which one-to-one mapping

between 𝑥’s and 𝑧’s an optimal encoder/decoder will learn under the AAE objective

(Eq. 3.2) and DAAE objective (Eq. 3.4), respectively.

Theorem 1. For any one-to-one mapping 𝐸 from {𝑥1, . . . , 𝑥𝑛} to {𝑧1, . . . , 𝑧𝑛}, the

optimal value of objective max𝐺∈𝒢𝐿

1
𝑛

∑︀𝑛
𝑖=1 log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑖)) is the same.

Intuitively, this result stems from the fact that the model receives no information

about the structure of 𝑥, and 𝑥1, . . . , 𝑥𝑛 are simply provided as different symbols.
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Figure 3-2: Illustration of the learned latent geometry by AAE before and after intro-
ducing 𝑥 perturbations. With high-capacity encoder/decoder networks, a standard
AAE has no preference over 𝑥-𝑧 couplings and thus can learn a random mapping
between them (Left). Trained with local perturbations 𝐶(𝑥), DAAE learns to map
similar 𝑥 to close 𝑧 to best achieve the denoising objective (Right).

Hence AAE offers no preference over 𝑥-𝑧 couplings, and a random matching in which

the 𝑧 do not reflect any data structure is equally good as any other matching (Figure 3-

2, Left). Latent point assignments start to differentiate, however, once we introduce

local input perturbations.

To elucidate how perturbations affect latent space geometry, it helps to first con-

sider a simple setting with only four examples 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝒳 . Again, we consider

given latent points 𝑧1, 𝑧2, 𝑧3, 𝑧4 sampled from 𝑝(𝑧), and the encoder/decoder are tasked

with learning which 𝑥 to match with which 𝑧. As depicted in Figure 3-2, suppose

there are two pairs of 𝑥 closer together and also two pairs of 𝑧 closer together. Let 𝜎

denote the sigmoid function, we have the following conclusion:

Theorem 2. Let 𝑑 be a distance metric over 𝒳 . Suppose 𝑥1, 𝑥2, 𝑥3, 𝑥4 satisfy that

with some 𝜖 > 0: 𝑑(𝑥1, 𝑥2) < 𝜖, 𝑑(𝑥3, 𝑥4) < 𝜖, and 𝑑(𝑥𝑖, 𝑥𝑗) > 𝜖 for all other (𝑥𝑖, 𝑥𝑗)

pairs. In addition, 𝑧1, 𝑧2, 𝑧3, 𝑧4 satisfy that with some 0 < 𝛿 < 𝜁: ‖𝑧1 − 𝑧2‖ < 𝛿,

‖𝑧3 − 𝑧4‖ < 𝛿, and ‖𝑧𝑖 − 𝑧𝑗‖ > 𝜁 for all other (𝑧𝑖, 𝑧𝑗) pairs. Suppose our perturbation

process 𝐶 reflects local 𝒳 geometry with: 𝑝𝐶(𝑥𝑖|𝑥𝑗) = 1/2 if 𝑑(𝑥𝑖, 𝑥𝑗) < 𝜖 and = 0

otherwise. For 𝛿 < 1/𝐿 · (2 log (𝜎(𝐿𝜁)) + log 2) and 𝜁 > 1/𝐿 · log
(︀
1/(

√
2− 1)

)︀
, the

denoising objective max𝐺∈𝒢𝐿

1
𝑛

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑝𝐶(𝑥𝑗|𝑥𝑖) log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑗)) (where 𝑛 = 4)

achieves the largest value when encoder 𝐸 maps close pairs of 𝑥 to close pairs of 𝑧.

This entails that DAAE will always prefer to map similar 𝑥 to similar 𝑧. Note that

Theorem 1 still applies here, and AAE will not prefer any particular 𝑥-𝑧 pairing over
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the other possibilities. We next generalize beyond the basic four-points scenario to

consider 𝑛 examples of 𝑥 that are clustered, and ask whether this cluster organization

will be reflected in the latent space of DAAE.

Theorem 3. Suppose 𝑥1, . . . , 𝑥𝑛 are divided into 𝑛/𝐾 clusters of equal size 𝐾,

with 𝑆𝑖 denoting the cluster index of 𝑥𝑖. Let the perturbation process 𝐶 be uni-

form within clusters, i.e. 𝑝𝐶(𝑥𝑖|𝑥𝑗) = 1/𝐾 if 𝑆𝑖 = 𝑆𝑗 and = 0 otherwise. With

a one-to-one encoder mapping 𝐸 from {𝑥1, . . . , 𝑥𝑛} to {𝑧1, . . . , 𝑧𝑛}, the denoising ob-

jective max𝐺∈𝒢𝐿

1
𝑛

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑝𝐶(𝑥𝑗|𝑥𝑖) log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑗)) has an upper bound: (1/𝑛2) ·∑︀

𝑖,𝑗:𝑆𝑖 ̸=𝑆𝑗
log 𝜎(𝐿‖𝐸(𝑥𝑖)− 𝐸(𝑥𝑗)‖)− log𝐾.

Theorem 3 provides an upper bound of the DAAE objective that can be achieved

by a particular 𝑥-𝑧 mapping. This achievable limit is substantially better when ex-

amples in the same cluster are mapped to the latent space in a manner that is well-

separated from encodings of other clusters. In other words, by preserving input space

cluster structure in the latent space, DAAE can achieve better objective values and

thus is incentivized to learn such encoder/decoder mappings. An analogous corollary

can be shown for the case when examples 𝑥 are perturbed to yield additional inputs

�̃� not present in the training data. In this case, the model would aim to collectively

map each example and its perturbations to a compact group of 𝑧 points well-separated

from other groups in the latent space.

Our synthetic experiments in Section 3.4.1 confirm that DAAE maintains the

cluster structure of sequence data in its latent space. While these are simulated data,

we note natural language often exhibits cluster structure based on topics/authorship

but also contains far richer syntactic and semantic structures. In the next section, we

empirically study the performance of DAAE on real text data.

3.5 Experiments

We test our proposed model and other text autoencoders on two benchmark datasets:

Yelp reviews and Yahoo answers [110, 135]. We analyze their latent space geome-

try, generation and reconstruction capacities, and applications to controllable text
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generation. All models are implemented using the same architecture. Hyperparam-

eters are set to values that produce the best overall generative models (see Sec-

tion 3.5.2). Detailed descriptions of training settings, human evaluations, and addi-

tional results/examples can be found in appendix.

Datasets The Yelp dataset is from Shen et al. [110], which has 444K/63K/127K

sentences of less than 16 words in length as train/dev/test sets, with a vocabulary of

10K. It was originally divided into positive and negative sentences for style transfer

between them. Here we discard the sentiment label and let the model learn from all

sentences indiscriminately. Our second dataset of Yahoo answers is from Yang et al.

[135]. It was originally document-level. We perform sentence segmentation and keep

sentences with length from 2 to 50 words. The resulting dataset has 495K/49K/50K

sentences for train/dev/test sets, with vocabulary size 20K.

Perturbation Process We randomly delete each word with probability 𝑝, so that

perturbations of sentences with more words in common will have a larger overlap.

We also tried replacing each word with a <mask> token or a random word from

the vocabulary. We found that all variants have similar generation-reconstruction

trade-off curves; in terms of neighborhood preservation, they are all better than other

autoencoders, but word deletion has the highest recall rate. This may be because

word replacement cannot perturb sentences of different lengths to each other even

if they are similar. Defining sentence similarity and meaningful perturbations are

task specific. Here, we demonstrate that even the simplest word deletions can bring

significant improvements. We leave it to future work to explore more sophisticated

text perturbations.

Baselines We compare our proposed DAAE with four alternative text autoen-

coders: AAE [81], latent-noising AAE [104, LAAE], adversarially regularized au-

toencoder [143, ARAE], and 𝛽-VAE [48]. Similar to our model, the LAAE uses

Gaussian perturbations in the latent space (rather than perturbations in the sen-

tence space) to improve AAE’s latent geometry. However, it requires enforcing an 𝐿1
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Figure 3-3: Recall rate of different autoencoders on the Yelp dataset. Quantifying
how well the latent geometry preserves text similarity, recall is defined as the fraction
of each sentence’s 10 nearest neighbors in terms of normalized edit distance whose
representations lie among the 𝑘 nearest neighbors in the latent space. ARAE has a
poor recall < 1% and thus not shown in the plot.

penalty (𝜆1 · ‖ log 𝜎2(𝑥)‖1) on the latent perturbations’ log-variance to prevent them

from vanishing. In contrast, input perturbations in DAAE enable stochastic latent

representations without parametric restrictions like Gaussianity.

3.5.1 Neighborhood Preservation

We begin by investigating whether input perturbations will induce latent space orga-

nization that better preserves neighborhood structure in the sentence space. Under

our word-dropout perturbation process, sentences with more words in common are

more likely to be perturbed into one another. This choice of 𝐶 approximately encodes

sentence similarity via normalized edit distance.4 Thus, within the test set, we find

both the 10 nearest neighbors of each sentence based on the normalized edit distance

(denote this set by NN𝑥), as well as the 𝑘 nearest neighbors based on Euclidean dis-

tance between latent representations (denote this set by NN𝑧). We compute the recall

rate |NN𝑥∩NN𝑧| / |NN𝑥|, which indicates how well local neighborhoods are preserved

in the latent space of different models.

4Normalized edit distance ∈ [0, 1] is the Levenshtein distance divided by the max length of two
sentences.
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Table 3.1: Examples of 5 nearest neighbors in the latent Euclidean space of AAE and
DAAE on the Yelp dataset.

Source my waitress katie was fantastic , attentive and personable .

AAE my cashier did not smile , barely said hello .
the service is fantastic , the food is great .
the employees are extremely nice and helpful .
our server kaitlyn was also very attentive and pleasant .
the crab po boy was also bland and forgettable .

DAAE the manager , linda , was very very attentive and personable .
stylist brenda was very friendly , attentive and professional .
the manager was also super nice and personable .
my server alicia was so sweet and attentive .
our waitress ms. taylor was amazing and very knowledgeable .

Source i have been known to eat two meals a day here .

AAE i have eaten here for _num_ years and never had a bad meal ever .
i love this joint .
i have no desire to ever have it again .
you do n’t need to have every possible dish on the menu .
i love this arena .

DAAE you can seriously eat one meal a day here .
i was really pleased with our experience here .
ive been coming here for years and always have a good experience .
i have gone to this place for happy hour for years .
we had _num_ ayce dinner buffets for _num_ on a tuesday night .

Figure 3-3 shows that DAAE consistently gives the highest recall, about 1.5∼2

times that of AAE, implying that input perturbations have a substantial effect on

shaping the latent space geometry. Table 3.1 presents the five nearest neighbors

found by AAE and DAAE in their latent space for example test set sentences. The

AAE sometimes encodes entirely unrelated sentences close together, while the latent

space geometry of the DAAE is structured based on key words such as “attentive”

and “personable”, and tends to group sentences with similar semantics close together.

These findings are consistent with our previous conclusions in Section 3.4.
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3.5.2 Generation-Reconstruction Trade-off

In this section, we evaluate various generative autoencoders in terms of both gener-

ation quality and reconstruction accuracy. A strong model should not only generate

high quality sentences, but also learn useful latent representations that capture signif-

icant data content. Recent work on text autoencoders has found an inherent tension

between these aims [12], yet only when both goals are met can we successfully ma-

nipulate sentences by modifying their latent representation (in order to produce valid

output sentences that retain the semantics of the input).

We compute the BLEU score [93] between input and reconstructed sentences to

measure reconstruction accuracy, and compute Forward/Reverse PPL to measure

sentence generation quality [21, 143].5 Forward PPL is the perplexity of a language

model trained on real data and evaluated on generated data. It measures the fluency

of the generated text, but cannot detect the collapsed case where the model repeatedly

generates a few common sentences. Reverse PPL is the perplexity of a language model

trained on generated data and evaluated on real data. It takes into account both the

fluency and diversity of the generated text. If a model generates only a few common

sentences, a language model trained on it will exhibit poor PPL on real data.

We thoroughly investigate the performance of different models and the trade-off

between generation and reconstruction. Figure 3-4 plots reconstruction BLEU (higher

is better) vs. Forward/Reverse PPL (lower is better). The lower right corner indicates

an ideal situation where good reconstruction accuracy and generation quality are both

achieved. For models with tunable hyperparameters, we sweep the full spectrum of

their generation-reconstruction trade-off by varying the KL coefficient 𝛽 of 𝛽-VAE,

the log-variance 𝐿1 penalty 𝜆1 of LAAE, and the word drop probability 𝑝 of DAAE.6

In the upper panel, we observe that a standard VAE (𝛽 = 1) completely collapses

and ignores the latent variable 𝑧, resulting in a reconstruction BLEU close to 0. At the

5While some use importance sampling estimates of data likelihood to evaluate VAEs [46], adopting
the encoder as a proposal density is not suited for AAE variants, as they are optimized based on
Wasserstein distances rather than likelihoods and lack closed-form posteriors.

6We also studied the VAE with word dropout on the decoder side proposed by Bowman et al.
[12], but found that it exhibited poor reconstruction over all settings of the dropout parameter (best
BLEU = 12.8 with dropout rate = 0.7). Thus this model is omitted from our other analyses.
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Figure 3-4: Generation-reconstruction trade-off of various text autoencoders on the
Yelp dataset. The “real data” line marks the PPL of a language model trained and
evaluated on real data. We strive to approach the lower right corner with both high
BLEU and low PPL. The grey box identifies hyperparameters we finalize for respective
models. Points of severe collapse (Reverse PPL > 200) are removed from the lower
panel.
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other extreme, AAE can achieve near-perfect reconstruction, but its latent space is

highly non-smooth and generated sentences are of poor quality, indicated by its large

Forward PPL. Decreasing 𝛽 in VAE or introducing latent noises in AAE provides the

model with a similar trade-off curve between reconstruction and generation. We note

that ARAE falls on or above their curves, revealing that it does not fare better than

these methods (Cífka et al. [21] also reported similar findings). Our proposed DAAE

provides a trade-off curve that is strictly superior to other models. With discrete 𝑥

and a complex encoder, the Gaussian perturbations added to the latent space by 𝛽-

VAE and LAAE are not directly related to how the inputs are encoded. In contrast,

input perturbations added by DAAE can constrain the encoder to maintain coherence

between neighboring inputs in an end-to-end fashion and help learn smoother latent

space.

The lower panel in Figure 3-4 illustrates that Reverse PPL first drops and then

rises as we increase the degree of regularization/perturbation. This is because when

𝑧 encodes little information, generations from prior-sampled 𝑧 lack enough diversity

to cover the real data. Again, DAAE outperforms other models that tend to have

higher PPL and lower BLEU.

Based on these results, we set 𝛽 = 0.15 for 𝛽-VAE, 𝜆1 = 0.05 for LAAE, and 𝑝 =

0.3 for DAAE in the neighborhood preservation and text manipulation experiments,

to ensure they have strong reconstruction abilities and encode enough information

about data.

3.5.3 Style Transfer via Latent Vector Arithmetic

Mikolov et al. [85] previously discovered that word embeddings from unsupervised

learning can capture linguistic relationships via simple arithmetic. A canonical ex-

ample is the embedding arithmetic “King” - “Man” + “Woman” ≈ “Queen”. Here, we

use the Yelp dataset with tense and sentiment as two example attributes [52, 110] to

investigate whether analogous structure emerges in the latent space of our sentence-

level models.
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Table 3.2: Above: automatic evaluations of vector arithmetic for tense inversion.
Below: human evaluation statistics of our model vs. the closest baseline 𝛽-VAE.

Model ACC BLEU PPL

ARAE 17.2 55.7 59.1
𝛽-VAE 49.0 43.5 44.4
AAE 9.7 82.2 37.4
LAAE 43.6 37.5 55.8
DAAE 50.3 54.3 32.0

𝛽-VAE is better: 25 DAAE is better: 48

both good: 26 both bad: 67 n/a: 34

Table 3.3: Examples of vector arithmetic for tense inversion.

Input i enjoy hanging out in their hookah lounge .
ARAE i enjoy hanging out in their 25th lounge .
𝛽-VAE i made up out in the backyard springs salad .
AAE i enjoy hanging out in their brooklyn lounge .
LAAE i enjoy hanging out in the customized and play .
DAAE i enjoyed hanging out in their hookah lounge .

Input had they informed me of the charge i would n’t have waited .
ARAE amazing egg of the may i actually !
𝛽-VAE had they help me of the charge i would n’t have waited .
AAE have they informed me of the charge i would n’t have waited .
LAAE they are girl ( the number so i would n’t be forever .
DAAE they have informed me of the charge i have n’t waited .

Tense We use the Stanford Parser to extract the main verb of a sentence and deter-

mine the sentence tense based on its part-of-speech tag. We compute a single “tense

vector” by averaging the latent code 𝑧 separately for 100 (non-parallel) past tense

sentences and present tense sentences in the development set, and then calculating

the difference between the two. Given a sentence from the test set, we attempt to

change its tense from past to present or from present to past through simple addi-

tion/subtraction of the tense vector. More precisely, a source sentence 𝑥 is first is

encoded to 𝑧 = 𝐸(𝑥), and then the tense-modified sentence is produced via 𝐺(𝑧± 𝑣),

where 𝑣 ∈ R𝑑 denotes the fixed tense vector.

To quantitatively compare different models, we compute their tense transfer ac-
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Table 3.4: Automatic evaluations of vector arithmetic for sentiment transfer. Accu-
racy (ACC) is measured by a sentiment classifier. The model of Shen et al. [110] is
specifically trained for sentiment transfer with labeled data, while our text autoen-
coders are not.

Model ACC BLEU PPL

Shen et al. [110] 81.7 12.4 38.4

AAE
±𝑣 7.2 86.0 33.7
±1.5𝑣 25.1 59.6 59.5
±2𝑣 57.5 27.4 139.8

DAAE
±𝑣 36.2 40.9 40.0
±1.5𝑣 73.6 18.2 54.1
±2𝑣 91.8 7.3 61.8

curacy as measured by the parser, output BLEU with the input sentence, and output

(forward) PPL evaluated by a language model. DAAE achieves the highest accuracy,

lowest PPL, and relatively high BLEU (Table 3.2, Above), indicating that the output

sentences produced by our model are more likely to be of high quality and of the

proper tense, while remaining similar to the source sentence. A human evaluation on

200 test sentences (100 past and 100 present, details in Appendix B.5) suggests that

DAAE outperforms 𝛽-VAE twice as often as it is outperformed, and it successfully

inverts tense for (48+ 26)/(200− 34) = 44.6% of sentences, 13.8% more than 𝛽-VAE

(Table 3.2, Below). Table 3.3 shows the results of adding or subtracting this fixed

latent vector offset under different models. DAAE properly changes “enjoy” to “en-

joyed” or the subjunctive mood to declarative mood. Other baselines either fail to

alter the tense, or undesirably change the semantic meaning of the source sentence

(e.g. “enjoy” to “made”).

Sentiment Following the same procedure to alter tense, we compute a “sentiment

vector” 𝑣 from 100 negative and positive sentences and use it to change the sentiment

of test sentences. Table 3.4 reports automatic evaluations, and Table 3.5 shows ex-

amples generated by AAE and DAAE. Scaling ±𝑣 to ±1.5𝑣 and ±2𝑣, we find that

resulting sentences get more and more positive/negative. However, the PPL for AAE

increases rapidly with the scaling factor, indicating that the sentences become un-
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Table 3.5: Examples of vector arithmetic for sentiment transfer.

Input the food is entirely tasteless and slimy .

AAE
+𝑣 the food is entirely tasteless and slimy .
+1.5𝑣 the food is entirely tasteless and slimy .
+2𝑣 the food is entirely and beef .

DAAE
+𝑣 the food is tremendous and fresh .
+1.5𝑣 the food is sensational and fresh .
+2𝑣 the food is gigantic .

Input i really love the authentic food and will come back again .

AAE
−𝑣 i really love the authentic food and will come back again .
−1.5𝑣 i really but the authentic food and will come back again .
−2𝑣 i really but the worst food but will never come back again .

DAAE
−𝑣 i really love the authentic food and will never come back again .
−1.5𝑣 i really do not like the food and will never come back again .
−2𝑣 i really did not believe the pretentious service and will never go back .

natural when their encodings have a large offset. DAAE enjoys a much smoother

latent space than AAE. At this challenging zero-shot setting where no style labels are

provided during training, DAAE with ±1.5𝑣 is able to transfer sentiment fairly well.

3.5.4 Sentence Interpolation via Latent Space Traversal

We also study sentence interpolation by traversing the latent space of text autoen-

coders. Given two input sentences, we encode them to 𝑧1, 𝑧2 and decode from

𝑡𝑧1 + (1 − 𝑡)𝑧2 (0 ≤ 𝑡 ≤ 1). Ideally, this should produce fluent sentences with grad-

ual semantic change. Table 3.6 shows two examples from the Yelp dataset, where it

is clear that DAAE produces more coherent and natural interpolations than AAE.

Table B.8.4 in the appendix shows two difficult examples from the Yahoo dataset,

where we interpolate between dissimilar sentences. While it is challenging to generate

semantically correct sentences in these cases, the latent space of our model exhibits

continuity on topic and syntactic structure.
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Table 3.6: Interpolations between two input sentences generated by AAE and our
model on the Yelp dataset.

Input 1 it ’s so much better than the other chinese food places in this area .
Input 2 better than other places .

AAE it ’s so much better than the other chinese food places in this area .
it ’s so much better than the other food places in this area .
better , much better .
better than other places .
better than other places .

DAAE it ’s so much better than the other chinese food places in this area .
it ’s much better than the other chinese places in this area .
better than the other chinese places in this area .
better than the other places in charlotte .
better than other places .

Input 1 fried dumplings are a must .
Input 2 the fried dumplings are a must if you ever visit this place .

AAE fried dumplings are a must .
fried dumplings are a must .
the dumplings are a must if you worst .
the fried dumplings are a must if you ever this place .
the fried dumplings are a must if you ever visit this place .

DAAE fried dumplings are a must .
fried dumplings are a must visit .
fried dumplings are a must in this place .
the fried dumplings are a must we ever visit this .
the fried dumplings are a must if we ever visit this place .

3.6 Conclusion

This paper provided a thorough analysis of the latent space representations of text

autoencoders. We showed that simply minimizing the divergence between data and

model distributions cannot ensure that the data structure is preserved in the latent

space, but straightforward denoising techniques can greatly improve text represen-

tations. We offered a theoretical explanation for these phenomena by analyzing the

latent space geometry arisen from input perturbations. Our results may also help ex-

plain the success of BERT [24], whose masked language modeling objective is similar

to a denoising autoencoder.
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Our proposed DAAE substantially outperforms other text autoencoders in both

generation and reconstruction capabilities, and demonstrates the potential for various

text manipulations via simple latent vector arithmetic. Future work may explore

more sophisticated perturbation strategies besides the basic random word deletion,

or investigate what additional properties of latent space geometry help provide finer

control over text generation with autoencoders. Beyond our theory which considered

autoencoders that have perfectly optimized their objectives, we hope to see additional

analyses in this area that account for the initialization/learning-process and analyze

other types of autoencoders.
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Chapter 4

Language Style Transfer from

Non-parallel Data

4.1 Introduction

Using massive amounts of parallel data has been essential for recent advances in text

generation tasks, such as machine translation and summarization. However, in many

text generation problems, we can only assume access to non-parallel or mono-lingual

data. Problems such as decipherment or style transfer are all instances of this family

of tasks. In all of these problems, we must preserve the content of the source sentence

but render the sentence consistent with desired presentation constraints (e.g., style,

plaintext/ciphertext).

The goal of controlling one aspect of a sentence such as style independently of

its content requires that we can disentangle the two. However, these aspects interact

in subtle ways in natural language sentences, and we can succeed in this task only

approximately even in the case of parallel data. Our task is more challenging here.

We merely assume access to two corpora of sentences with the same distribution

of content albeit rendered in different styles. Our goal is to demonstrate that this

distributional equivalence of content, if exploited carefully, suffices for us to learn to

map a sentence in one style to a style-independent content vector and then decode it

to a sentence with the same content but a different style.

71



Figure 4-1: An overview of the proposed cross-alignment method. 𝒳1 and 𝒳2 are two
sentence domains with different styles 𝑦1 and 𝑦2, and 𝒵 is the shared latent content
space. Encoder 𝐸 maps a sentence to its content representation, and generator 𝐺
generates the sentence back when combining with the original style. When combining
with a different style, transferred 𝒳1 is aligned with 𝒳2 and 𝒳2 is aligned with 𝒳1 at
the distributional level.

In this paper, we introduce a refined alignment of sentence representations across

text corpora (illustrated in Figure 4-1). We learn an encoder that takes a sentence

and its original style indicator as input, and maps it to a style-independent content

representation. This is then passed to a style-dependent decoder for rendering. We

do not use typical VAEs for this mapping since it is imperative to keep the latent

content representation rich and unperturbed. Indeed, richer latent content repre-

sentations are much harder to align across the corpora and therefore they offer more

informative content constraints. Moreover, we reap additional information from cross-

generated (style-transferred) sentences, thereby getting two distributional alignment

constraints. For example, positive sentences that are style-transferred into negative

sentences should match, as a population, the given set of negative sentences.

To demonstrate the flexibility of the proposed model, we evaluate it on three tasks:

sentiment modification, decipherment of word substitution ciphers, and recovery of

word order. In all of these applications, the model is trained on non-parallel data.

On the sentiment modification task, the model successfully transfers the sentiment

while keeps the content for 41.5% of review sentences according to human evaluation,

compared to 41.0% achieved by the control-gen model of [51]. It achieves strong

performance on the decipherment and word order recovery tasks, reaching BLEU

score of 57.4 and 26.1 respectively, obtaining 50.2 and 20.9 gap than a comparable

method without cross-alignment.
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4.2 Related Work

Style Transfer in Vision Non-parallel style transfer has been extensively stud-

ied in computer vision [36, 59, 74, 75, 120, 137, 145]. Gatys et al. [36] explicitly

extract content and style features, and then synthesize a new image by combining

“content” features of one image with “style” features from another. More recent ap-

proaches learn generative networks directly via generative adversarial training [39]

from two given data domains 𝑋1 and 𝑋2. The key computational challenge in this

non-parallel setting is aligning the two domains. For example, CoupledGANs [74] em-

ploy weight-sharing between networks to learn cross-domain representation, whereas

CycleGAN [145] introduces cycle consistency which relies on transitivity to regular-

ize the transfer functions. While our approach has a similar high-level architecture,

the discreteness of natural language does not allow us to reuse these models and

necessitates the development of new methods.

Non-parallel Transfer in Natural Language In natural language processing,

most tasks that involve generation (e.g., translation and summarization) are trained

using parallel sentences. Our work most closely relates to approaches that do not

utilize parallel data, but instead guide sentence generation from an indirect training

signal [51, 88]. For instance, Mueller et al. [88] manipulate the hidden representation

to generate sentences that satisfy a desired property (e.g., sentiment) as measured by

a corresponding classifier. However, their model does not necessarily enforce content

preservation. More similar to our work, Hu et al. [51] aims at generating sentences

with controllable attributes by learning disentangled latent representations [18]. Their

model builds on variational autoencoders (VAEs) and uses independency constraints

to enforce that attributes can be reliably inferred back from generated sentences.

While our model builds on distributional cross-alignment for the purpose of style

transfer and content preservation, these constraints can be added in the same way.

Adversarial Training over Discrete Samples Recently, a wide range of tech-

niques addresses challenges associated with adversarial training over discrete sam-
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ples generated by recurrent networks [16, 49, 68, 138]. In our work, we employ the

Professor-Forcing algorithm [68] which was originally proposed to close the gap be-

tween teacher-forcing during training and self-feeding during testing for recurrent

networks. This design fits well with our scenario of style transfer that calls for cross-

alignment. By using continuous relaxation to approximate the discrete sampling

process [55, 80], the training procedure can be effectively optimized through back-

propagation [40, 67].

4.3 Formulation

In this section, we formalize the task of non-parallel style transfer and discuss the

feasibility of the learning problem. We assume the data are generated by the following

process:

1. a latent style variable 𝑦 is generated from some distribution 𝑝(𝑦);

2. a latent content variable 𝑧 is generated from some distribution 𝑝(𝑧);

3. a datapoint 𝑥 is generated from conditional distribution 𝑝(𝑥|𝑦, 𝑧).

We observe two datasets with the same content distribution but different styles

𝑦1 and 𝑦2, where 𝑦1 and 𝑦2 are unknown. Specifically, the two observed datasets

𝑋1 = {𝑥(1)
1 , . . . , 𝑥

(𝑛)
1 } and 𝑋2 = {𝑥(1)

2 , . . . , 𝑥
(𝑚)
2 } consist of samples drawn from 𝑝(𝑥1|𝑦1)

and 𝑝(𝑥2|𝑦2) respectively. We want to estimate the style transfer functions between

them, namely 𝑝(𝑥1|𝑥2; 𝑦1, 𝑦2) and 𝑝(𝑥2|𝑥1; 𝑦1, 𝑦2).

A question we must address is when this estimation problem is feasible. Essen-

tially, we only observe the marginal distributions of 𝑥1 and 𝑥2, yet we are going to

recover their joint distribution:

𝑝(𝑥1, 𝑥2|𝑦1, 𝑦2) =
∫︁
𝑧

𝑝(𝑧)𝑝(𝑥1|𝑦1, 𝑧)𝑝(𝑥2|𝑦2, 𝑧)𝑑𝑧 (4.1)

As we only observe 𝑝(𝑥1|𝑦1) and 𝑝(𝑥2|𝑦2), 𝑦1 and 𝑦2 are unknown to us. If two

different 𝑦 and 𝑦′ lead to the same distribution 𝑝(𝑥|𝑦) = 𝑝(𝑥|𝑦′), then given a dataset
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𝑋 sampled from it, its underlying style can be either 𝑦 or 𝑦′. Consider the following

two cases: (1) both datasets 𝑋1 and 𝑋2 are sampled from the same style 𝑦; (2) 𝑋1 and

𝑋2 are sampled from style 𝑦 and 𝑦′ respectively. These two scenarios have different

joint distributions, but the observed marginal distributions are the same. To prevent

such confusion, we constrain the underlying distributions as stated in the following

proposition:

Proposition 1. In the generative framework above, 𝑥1 and 𝑥2’s joint distribution

can be recovered from their marginals only if for any different 𝑦, 𝑦′ ∈ 𝒴, distributions

𝑝(𝑥|𝑦) and 𝑝(𝑥|𝑦′) are different.

This proposition basically says that 𝑋 generated from different styles should be

“distinct” enough, otherwise the transfer task between styles is not well defined. While

this seems trivial, it may not hold even for simplified data distributions. The following

examples illustrate how the transfer (and recovery) becomes feasible or infeasible

under different model assumptions. As we shall see, for a certain family of styles 𝒴 ,

the more complex distribution for 𝑧, the more probable it is to recover the transfer

function and the easier it is to search for the transfer.

4.3.1 Example 1: Gaussian

Consider the common choice that 𝑧 ∼ 𝒩 (0, 𝐼) has a centered isotropic Gaussian

distribution. Suppose a style 𝑦 = (𝐴, 𝑏) is an affine transformation, i.e. 𝑥 = 𝐴𝑧+𝑏+𝜖,

where 𝜖 is a noise variable. For 𝑏 = 0 and any orthogonal matrix 𝐴, 𝐴𝑧+ 𝑏 ∼ 𝑁(0, 𝐼)

and hence 𝑥 has the same distribution for any such styles 𝑦 = (𝐴, 0). In this case,

the effect of rotation cannot be recovered.

Interestingly, if 𝑧 has a more complex distribution, such as a Gaussian mixture,

then affine transformations can be uniquely determined.

Lemma 4. Let 𝑧 be a mixture of Gaussians 𝑝(𝑧) =
∑︀𝐾

𝑘=1 𝜋𝑘𝒩 (𝑧;𝜇𝑘,Σ𝑘). Assume

𝐾 ≥ 2, and there are two different Σ𝑖 ̸= Σ𝑗. Let 𝒴 = {(𝐴, 𝑏)||𝐴| ≠ 0} be all invertible

affine transformations, and 𝑝(𝑥|𝑦, 𝑧) = 𝒩 (𝑥;𝐴𝑧+ 𝑏, 𝜖2𝐼), in which 𝜖 is a noise. Then

for all 𝑦 ̸= 𝑦′ ∈ 𝒴, 𝑝(𝑥|𝑦) and 𝑝(𝑥|𝑦′) are different distributions.
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Theorem 5. If the distribution of 𝑧 is a mixture of Gaussians which has more than

two different components, and 𝑥1, 𝑥2 are two affine transformations of 𝑧, then the

transfer between them can be recovered given their respective marginals.

4.3.2 Example 2: Word Substitution

Consider here another example when 𝑧 is a bi-gram language model and a style 𝑦

is a vocabulary in use that maps each “content word” onto its surface form (lexical

form). If we observe two realizations 𝑥1 and 𝑥2 of the same language 𝑧, the transfer

and recovery problem becomes inferring a word alignment between 𝑥1 and 𝑥2.

Note that this is a simplified version of language decipherment or translation.

Nevertheless, the recovery problem is still sufficiently hard. To see this, let 𝑀1,𝑀2 ∈
ℛ𝑛×𝑛 be the estimated bi-gram probability matrix of data 𝑋1 and 𝑋2 respectively.

Seeking the word alignment is equivalent to finding a permutation matrix 𝑃 such that

𝑃⊤𝑀1𝑃 ≈ 𝑀2, which can be expressed as an optimization problem,

min
𝑃

‖𝑃⊤𝑀1𝑃 −𝑀2‖2

The same formulation applies to graph isomorphism (GI) problems given 𝑀1 and 𝑀2

as the adjacency matrices of two graphs, suggesting that determining the existence

and uniqueness of 𝑃 is at least GI hard. Fortunately, if 𝑀 as a graph is complex

enough, the search problem could be more tractable. For instance, if each vertex’s

weights of incident edges as a set is unique, then finding the isomorphism can be done

by simply matching the sets of edges. This assumption largely applies to our scenario

where 𝑧 is a complex language model. We empirically demonstrate this in the results

section.

The above examples suggest that 𝑧 as the latent content variable should carry

most complexity of data 𝑥, while 𝑦 as the latent style variable should have relatively

simple effects. We construct the model accordingly in the next section.
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4.4 Method

Learning the style transfer function under our generative assumption is essentially

learning the conditional distribution 𝑝(𝑥1|𝑥2; 𝑦1, 𝑦2) and 𝑝(𝑥2|𝑥1; 𝑦1, 𝑦2). Unlike in

vision where images are continuous and hence the transfer functions can be learned

and optimized directly, the discreteness of language requires us to operate through the

latent space. Since 𝑥1 and 𝑥2 are conditionally independent given the latent content

variable 𝑧,

𝑝(𝑥1|𝑥2; 𝑦1, 𝑦2) =

∫︁
𝑧

𝑝(𝑥1, 𝑧|𝑥2; 𝑦1, 𝑦2)𝑑𝑧

=

∫︁
𝑧

𝑝(𝑧|𝑥2, 𝑦2) · 𝑝(𝑥1|𝑦1, 𝑧)𝑑𝑧

= E𝑧∼𝑝(𝑧|𝑥2,𝑦2)[𝑝(𝑥1|𝑦1, 𝑧)]

(4.2)

This suggests us learning an autoencoder model. Specifically, a style transfer from

𝑥2 to 𝑥1 involves two steps—an encoding step that infers 𝑥2’s content 𝑧 ∼ 𝑝(𝑧|𝑥2, 𝑦2),

and a decoding step which generates the transferred counterpart from 𝑝(𝑥1|𝑦1, 𝑧). In

this work, we approximate and train 𝑝(𝑧|𝑥, 𝑦) and 𝑝(𝑥|𝑦, 𝑧) using neural networks

(where 𝑦 ∈ {𝑦1, 𝑦2}).
Let 𝐸 : 𝒳 × 𝒴 → 𝒵 be an encoder that infers the content 𝑧 for a given sentence

𝑥 and a style 𝑦, and 𝐺 : 𝒴 ×𝒵 → 𝒳 be a generator that generates a sentence 𝑥 from

a given style 𝑦 and content 𝑧. 𝐸 and 𝐺 form an autoencoder when applying to the

same style, and thus we have reconstruction loss,

ℒrec(𝜃𝐸, 𝜃𝐺) = E𝑥1∼𝑋1 [− log 𝑝𝐺(𝑥1|𝑦1, 𝐸(𝑥1, 𝑦1))] +

E𝑥2∼𝑋2 [− log 𝑝𝐺(𝑥2|𝑦2, 𝐸(𝑥2, 𝑦2))]
(4.3)

where 𝜃 are the parameters to estimate.

In order to make a meaningful transfer by flipping the style, 𝑋1 and 𝑋2’s content

space must coincide, as our generative framework presumed. To constrain that 𝑥1

and 𝑥2 are generated from the same latent content distribution 𝑝(𝑧), one option is to

apply a variational autoencoder [64]. A VAE imposes a prior density 𝑝(𝑧), such as
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𝑧 ∼ 𝒩 (0, 𝐼), and uses a KL-divergence regularizer to align both posteriors 𝑝𝐸(𝑧|𝑥1, 𝑦1)

and 𝑝𝐸(𝑧|𝑥2, 𝑦2) to it,

ℒKL(𝜃𝐸) = E𝑥1∼𝑋1 [𝐷KL(𝑝𝐸(𝑧|𝑥1, 𝑦1)‖𝑝(𝑧))] + E𝑥2∼𝑋2 [𝐷KL(𝑝𝐸(𝑧|𝑥2, 𝑦2)‖𝑝(𝑧))] (4.4)

The overall objective is to minimize ℒrec + ℒKL, whose opposite is the variational

lower bound of data likelihood.

However, as we have argued in the previous section, restricting 𝑧 to a simple and

even distribution and pushing most complexity to the decoder may not be a good

strategy for non-parallel style transfer. In contrast, a standard autoencoder simply

minimizes the reconstruction error, encouraging 𝑧 to carry as much information about

𝑥 as possible. On the other hand, it lowers the entropy in 𝑝(𝑥|𝑦, 𝑧), which helps to

produce meaningful style transfer in practice as we flip between 𝑦1 and 𝑦2. Without

explicitly modeling 𝑝(𝑧), it is still possible to force distributional alignment of 𝑝(𝑧|𝑦1)
and 𝑝(𝑧|𝑦2). To this end, we introduce two constrained variants of autoencoder.

4.4.1 Aligned Autoencoder

Dispense with VAEs that make an explicit assumption about 𝑝(𝑧) and align both

posteriors to it, we align 𝑝𝐸(𝑧|𝑦1) and 𝑝𝐸(𝑧|𝑦2) with each other, which leads to the

following constrained optimization problem:

𝜃* = argmin
𝜃

ℒrec(𝜃𝐸, 𝜃𝐺)

s.t. 𝐸(𝑥1, 𝑦1)
d
= 𝐸(𝑥2, 𝑦2) 𝑥1 ∼ 𝑋1, 𝑥2 ∼ 𝑋2

(4.5)

In practice, a Lagrangian relaxation of the primal problem is instead optimized. We

introduce an adversarial discriminator 𝐷 to align the aggregated posterior distribution

of 𝑧 from different styles [81]. 𝐷 aims to distinguish between these two distributions:

ℒadv(𝜃𝐸, 𝜃𝐷) = E𝑥1∼𝑋1 [− log𝐷(𝐸(𝑥1, 𝑦1))] + E𝑥2∼𝑋2 [− log(1−𝐷(𝐸(𝑥2, 𝑦2)))]

(4.6)
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The overall training objective is a min-max game played among the encoder 𝐸,

generator 𝐺 and discriminator 𝐷. They constitute an aligned autoencoder:

min
𝐸,𝐺

max
𝐷

ℒrec − 𝜆ℒadv (4.7)

We implement the encoder 𝐸 and generator 𝐺 using single-layer RNNs with GRU

cell. 𝐸 takes an input sentence 𝑥 with initial hidden state 𝑦, and outputs the last

hidden state 𝑧 as its content representation. 𝐺 generates a sentence 𝑥 conditioned on

latent state (𝑦, 𝑧). To align the distributions of 𝑧1 = 𝐸(𝑥1, 𝑦1) and 𝑧2 = 𝐸(𝑥2, 𝑦2), the

discriminator 𝐷 is a feed-forward network with a single hidden layer and a sigmoid

output layer.

4.4.2 Cross-Aligned Autoencoder

The second variant, cross-aligned autoencoder, directly aligns the transfered samples

from one style with the true samples from the other. Under the generative assump-

tion, 𝑝(𝑥2|𝑦2) =
∫︀
𝑥1
𝑝(𝑥2|𝑥1; 𝑦1, 𝑦2)𝑝(𝑥1|𝑦1)𝑑𝑥1, thus 𝑥2 (sampled from the left-hand

side) should exhibit the same distribution as transferred 𝑥1 (sampled from the right-

hand side), and vice versa. Similar to our first model, the second model uses two

discriminators 𝐷1 and 𝐷2 to align the populations. 𝐷1’s job is to distinguish be-

tween real 𝑥1 and transferred 𝑥2, and 𝐷2’s job is to distinguish between real 𝑥2 and

transferred 𝑥1.

Adversarial training over the discrete samples generated by 𝐺 hinders gradients

propagation. Although sampling-based gradient estimator such as REINFORCE [126]

can by adopted, training with these methods can be unstable due to the high variance

of the sampled gradient. Instead, we employ two recent techniques to approximate

the discrete training [51, 68]. First, instead of feeding a single sampled word as

the input to the generator RNN, we use the softmax distribution over words instead.

Specifically, during the generating process of transferred 𝑥2 from 𝐺(𝑦1, 𝑧2), suppose at

time step 𝑡 the output logit vector is 𝑣𝑡. We feed its peaked distribution softmax(𝑣𝑡/𝛾)

as the next input, where 𝛾 ∈ (0, 1) is a temperature parameter.
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Figure 4-2: Cross-aligning between 𝑥1 and transferred 𝑥2. For 𝑥1, 𝐺 is teacher-forced
by its words 𝑤1𝑤2 . . . 𝑤𝑡. For transfered 𝑥2, 𝐺 is self-fed by previous output logits.
The sequence of hidden states ℎ0, . . . , ℎ𝑡 and ℎ̃0, . . . , ℎ̃𝑡 are passed to discriminator
𝐷1 to be aligned. Note that our first variant aligned autoencoder is a special case of
this, where only ℎ0 and ℎ̃0, i.e. 𝑧1 and 𝑧2, are aligned.

Secondly, we use Professor-Forcing [68] to match the sequence of hidden states

instead of the output words, which contains the information about outputs and is

smoothly distributed. That is, the input to the discriminator 𝐷1 is the sequence

of hidden states of either (1) 𝐺(𝑦1, 𝑧1) teacher-forced by a real example 𝑥1, or (2)

𝐺(𝑦1, 𝑧2) self-fed by previous soft distributions.

The running procedure of our cross-aligned autoencoder is illustrated in Figure 4-

2. Note that cross-aligning strengthens the alignment of latent variable 𝑧 over the

recurrent network of generator 𝐺. By aligning the whole sequence of hidden states, it

prevents 𝑧1 and 𝑧2’s initial misalignment from propagating through the recurrent gen-

erating process, as a result of which the transferred sentence may end up somewhere

far from the target domain.

We implement both 𝐷1 and 𝐷2 using convolutional neural networks for sequence

classification [61]. The training algorithm is presented in Algorithm 2.
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Algorithm 2 Cross-aligned autoencoder training. The hyper-parameters are set as
𝜆 = 1, 𝛾 = 0.001 and learning rate is 0.0001 for all experiments in this paper.
Require: Two corpora of different styles 𝑋1, 𝑋2. Lagrange multiplier 𝜆, temperature
𝛾.
Initialize 𝜃𝐸, 𝜃𝐺, 𝜃𝐷1 , 𝜃𝐷2

repeat
for 𝑝 = 1, 2; 𝑞 = 2, 1 do

Sample a mini-batch of 𝑘 examples {𝑥(𝑖)
𝑝 }𝑘𝑖=1 from 𝑋𝑝

Get the latent content representations 𝑧
(𝑖)
𝑝 = 𝐸(𝑥

(𝑖)
𝑝 , 𝑦𝑝)

Unroll 𝐺 from initial state (𝑦𝑝, 𝑧
(𝑖)
𝑝 ) by feeding 𝑥

(𝑖)
𝑝 , and get the hidden states

sequence ℎ
(𝑖)
𝑝

Unroll 𝐺 from initial state (𝑦𝑞, 𝑧
(𝑖)
𝑝 ) by feeding previous soft output distribution

with temperature 𝛾, and get the transferred hidden states sequence ℎ̃
(𝑖)
𝑝

end for
Compute the reconstruction ℒrec by Eq. (4.3)
Compute 𝐷1’s (and symmetrically 𝐷2’s) loss:

ℒadv1 = −1

𝑘

𝑘∑︁
𝑖=1

log𝐷1(ℎ
(𝑖)
1 )− 1

𝑘

𝑘∑︁
𝑖=1

log(1−𝐷1(ℎ̃
(𝑖)
2 )) (4.8)

Update {𝜃𝐸, 𝜃𝐺} by gradient descent on loss

ℒrec − 𝜆(ℒadv1 + ℒadv2) (4.9)

Update 𝜃𝐷1 and 𝜃𝐷2 by gradient descent on loss ℒadv1 and ℒadv2 respectively
until convergence

Ensure: Style transfer functions 𝐺(𝑦2, 𝐸(·, 𝑦1)) : 𝒳1 → 𝒳2 and 𝐺(𝑦1, 𝐸(·, 𝑦2)) : 𝒳2 →
𝒳1

4.5 Experimental Setup

Sentiment Modification Our first experiment focuses on text rewriting with the

goal of changing the underlying sentiment, which can be regarded as “style transfer”

between negative and positive sentences. We run experiments on Yelp restaurant

reviews, utilizing readily available user ratings associated with each review. Following

standard practice, reviews with rating above three are considered positive, and those

below three are considered negative. While our model operates at the sentence level,

the sentiment annotations in our dataset are provided at the document level. We
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assume that all the sentences in a document have the same sentiment. This is clearly

an oversimplification, since some sentences (e.g., background) are sentiment neutral.

Given that such sentences are more common in long reviews, we filter out reviews

that exceed 10 sentences. We further filter the remaining sentences by eliminating

those that exceed 15 words. The resulting dataset has 250K negative sentences, and

350K positive ones. The vocabulary size is 10K after replacing words occurring less

than 5 times with the “<unk>” token. As a baseline model, we compare against the

control-gen model of Hu et al. [51].

To quantitatively evaluate the transfered sentences, we adopt a model-based met-

ric similar to the one used for image transfer [54]. Specifically, we measure how often

a transferred sentence has the correct sentiment according to a pre-trained sentiment

classifier. For this purpose, we use the TextCNN model as described in Kim [61]. On

our simplified dataset for style transfer, it achieves nearly perfect accuracy of 97.4%.

While the quantitative evaluation provides some indication of transfer quality, it

does not capture all the aspects of this generation task. Therefore, we also perform two

human evaluations on 500 sentences randomly selected from the test set1. In the first

evaluation, the judges were asked to rank generated sentences in terms of their fluency

and sentiment. Fluency was rated from 1 (unreadable) to 4 (perfect), while senti-

ment categories were “positive”, “negative”, or “neither” (which could be contradictory,

neutral or nonsensical). In the second evaluation, we evaluate the transfer process

comparatively. The annotator was shown a source sentence and the corresponding

outputs of the systems in a random order, and was asked “Which transferred sentence

is semantically equivalent to the source sentence with an opposite sentiment?”. They

can be both satisfactory, A/B is better, or both unsatisfactory. We collect two labels

for each question. The label agreement and conflict resolution strategy can be found

in the supplementary material. Note that the two evaluations are not redundant. For

instance, a system that always generates the same grammatically correct sentence

with the right sentiment independently of the source sentence will score high in the

first evaluation setup, but low in the second one.

1we eliminated 37 sentences from them that were judged as neutral by human judges.
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Word Substitution Decipherment Our second set of experiments involves de-

cipherment of word substitution ciphers, which has been previously explored in NLP

literature [28, 90]. These ciphers replace every word in plaintext (natural language)

with a cipher token according to a 1-to-1 substitution key. The decipherment task

is to recover the plaintext from ciphertext. It is trivial if we have access to paral-

lel data. However, we are interested to consider a non-parallel decipherment sce-

nario. For training, we select 200K sentences as 𝑋1, and apply a substitution cipher

𝑓 on a different set of 200K sentences to get 𝑋2. While these sentences are non-

parallel, they are drawn from the same distribution from the review dataset. The

development and test sets have 100K parallel sentences 𝐷1 = {𝑥(1), . . . , 𝑥(𝑛)} and

𝐷2 = {𝑓(𝑥(1)), . . . , 𝑓(𝑥(𝑛))}. We can quantitatively compare between 𝐷1 and trans-

ferred (deciphered) 𝐷2 using BLEU score [93].

Clearly, the difficulty of this decipherment task depends on the number of substi-

tuted words. Therefore, we report model performance with respect to the percentage

of the substituted vocabulary. Note that the transfer models do not know that 𝑓 is a

word substitution function. They learn it entirely from the data distribution.

In addition to different transfer models, we introduce a simple decipherment base-

line based on word frequency. Specifically, shared words between 𝑋1 and 𝑋2 do not

require translation, the rest of the words are mapped based on their frequency, and

ties are broken arbitrarily. Finally, to assess the difficulty of the task, we report the

accuracy of a machine translation system trained on a parallel corpus [65].

Word Order Recovery Our final experiments focus on the word ordering task,

also known as bag translation [13, 108]. By learning the style transfer functions

between original English sentences 𝑋1 and shuffled English sentences 𝑋2, the model

can be used to recover the original word order of a shuffled sentence (or conversely

to randomly permute a sentence). The process to construct non-parallel training

data and parallel testing data is the same as in the word substitution decipherment

experiment. Again the transfer models do not know that 𝑓 is a shuffle function and

learn it completely from data.
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Table 4.1: Sentiment accuracy of transferred sentences measured by a pretrained
classifier.

Method ACC

Hu et al. [51] 83.5

Variational autoencoder 23.2
Aligned autoencoder 48.3
Cross-aligned autoencoder 78.4

Table 4.2: Human evaluations on sentiment, fluency and overall transfer quality.
Fluency rating is from 1 (unreadable) to 4 (perfect). Overall transfer quality is
evaluated in a comparative manner, where the judge is shown a source sentence and
two transferred sentences, and decides whether they are both good, both bad, or one
is better.

Method Sentiment Fluency Overall transfer

Hu et al. [51] 70.8 3.2 41.0
Cross-align 62.6 2.8 41.5

4.6 Results

Sentiment Modification Table 4.1 and Table 4.2 show the performance of various

models for both human and automatic evaluation. The control-gen model of Hu

et al. [51] performs better in terms of sentiment accuracy in both evaluations. This

is not surprising as their generation is directly guided by a sentiment classifier. Their

system also achieves higher fluency score. However, these gains do not translate into

improvements in terms of the overall transfer, where our model faired better. As

can be seen from the examples listed in Table 4.3, our model is more consistent with

the grammatical structure and semantic meaning of the source sentence. In contrast,

their model achieves sentiment change by generating an entirely new sentence which

has little overlap with the source. The discrepancy between the two experiments

demonstrates the crucial importance of developing appropriate evaluation measures

to compare models for style transfer.
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Table 4.3: Sentiment transfer samples. The first line is an input sentence, the second
and third lines are the generated sentences after sentiment transfer by Hu et al. [51]
and our cross-aligned autoencoder, respectively.

From negative to positive

consistently slow .
consistently good .
consistently fast .

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .

From positive to negative

i love the ladies here !
i avoid all the time !
i hate the doctor here !

my appetizer was also very good and unique .
my bf was n’t too pleased with the beans .
my appetizer was also very cold and not fresh whatsoever .

came here with my wife and her grandmother !
came here with my wife and hated her !
came here with my wife and her son .
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Table 4.4: BLEU scores of word substitution decipherment and word order recovery.

Method Substitution decipher Order recover
20% 40% 60% 80% 100%

No transfer (copy) 56.4 21.4 6.3 4.5 0 5.1
Unigram matching 74.3 48.1 17.8 10.7 1.2 -
Variational autoencoder 79.8 59.6 44.6 34.4 0.9 5.3
Aligned autoencoder 81.0 68.9 50.7 45.6 7.2 5.2
Cross-aligned autoencoder 83.8 79.1 74.7 66.1 57.4 26.1

Parallel translation 99.0 98.9 98.2 98.5 97.2 64.6

Word Substitution Decipherment Table 4.4 summarizes the performance of

our model and the baselines on the decipherment task, at various levels of word

substitution. Consistent with our intuition, the last row in this table shows that the

task is trivial when the parallel data is provided. In non-parallel case, the difficulty

of the task is driven by the substitution rate. Across all the testing conditions, our

cross-aligned model consistently outperforms its counterparts. The difference becomes

more pronounced as the task becomes harder. When the substitution rate is 20%,

all methods do a reasonably good job in recovering substitutions. However, when

100% of the words are substituted (as expected in real language decipherment), the

poor performance of variational autoencoder and aligned autoencoder rules out their

application for this task.

Word Order Recovery The last column in Table 4.4 demonstrates the perfor-

mance on the word order recovery task. Order recovery is much harder—even when

trained with parallel data, the machine translation model achieves only 64.6 BLEU

score. Note that some generated orderings may be completely valid (e.g., reordering

conjunctions), but the models will be penalized for producing them. In this task,

only the cross-aligned autoencoder achieves grammatical reorder to a certain extent,

demonstrated by its BLEU score 26.1. Other models fail this task, doing no better

than no transfer.
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4.7 Conclusion

Transferring languages from one style to another has been previously trained using

parallel data. In this work, we formulate the task as a decipherment problem with

access only to non-parallel data. The two data collections are assumed to be gener-

ated by a latent variable generative model. Through this view, our method optimizes

neural networks by forcing distributional alignment (invariance) over the latent space

or sentence populations. We demonstrate the effectiveness of our method on tasks

that permit quantitative evaluation, such as sentiment transfer, word substitution

decipherment and word ordering. The decipherment view also provides an interest-

ing open question—when can the joint distribution 𝑝(𝑥1, 𝑥2) be recovered given only

marginal distributions? We believe addressing this general question would promote

the style transfer research in both vision and NLP.
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Chapter 5

Language Style Transfer with

Confounders

5.1 Introduction

Despite advances in neural text generation [14], fine-grained control over generated

outputs remains a significant challenge. Indeed, the ability to easily transfer output

style by altering attributes such as sentiment, formality, genre, and personal styles

would make text generation tools more appealing [52, 103, 110, 132].

Solving the problem of style transfer typically requires the method to be able

to disentangle what should be transferred from orthogonal aspects of sentences that

ought to be kept intact. This disentanglement problem can be largely avoided in

simple supervised scenarios by giving the access to parallel sentences differing only in

style (e.g., sentiment transfer with parallel negative and positive sentences, Figure 5-

1.a). Recent approaches address a more difficult version of the task by dispensing

with parallel sentences [110]. Nevertheless, they assume that corpora differing in style

remain distributionally matched in other ways (e.g., sentiment transfer with negative

and positive reviews from the same category of products, Figure 5-1.b).

However, data available for training style transfer models is rarely distributionally

matched and often involves changes other than style as well (e.g., sentiment transfer

where negative and positive reviews come from different product categories, Figure 5-
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training sentence test sentence

Home and Kitchen style Home and Kitchen

negative positive

negative positive
style

Home and Kitchen Home and Kitchen

a) Parallel

b) Non-Parallel, Distributionally Matched

c) Not Distributionally Matched

confounding 
difference

negative positive

style

Home and Kitchen

Clothing, Shoes, 
Jewelry

Cell Phone and  
Accessories

style

Electronics

Figure 5-1: Different learning scenarios for style transfer. a) With parallel examples,
learning of the transfer mapping is supervised. b) With non-parallel, distributionally
matched datasets, learning of the transfer mapping is unsupervised. Nevertheless,
style is given as the dataset difference, and generation takes place in-distribution. c)
With non-parallel, not distributionally matched datasets, style needs to be inferred
by excluding confounding differences. Not only is learning of the transfer mapping
unsupervised, but generation is also out-of-distribution.

1.c). This mismatch means that the desired style difference is no longer illustrated

directly as the difference between the two corpora, making the task substantially

more challenging. More subtly, the model is asked to generate sentences it has not

seen during training, since the generated sentences in a new style should not also

reproduce those confounding differences present in the training data.

Solving style transfer with confounding cues requires us to infer what the desired

style difference is. We show that this inference can be facilitated by dividing the data

into two groups of different styles, while the sets within each group illustrate variations

we do not wish to alter. In the example in Figure 5-1.c, reviews are divided into two

groups according to their sentiment, and within a group, each dataset corresponds to

a different product category which needs to be preserved. Besides sentiment transfer,

our setup easily generalizes to other style transfer tasks, e.g., dialectal transfer. In

this case, the groups will be divided according to dialect, and sets within each group

will represent different speakers whose personal style should be preserved.

Our model builds on invariant risk minimization [3] to infer style as an invariant

distinction across different datasets from the two groups. The resulting style classifier

leaves complementary aspects of sentences to be controlled (preserved). We can

illustrate aspects that are orthogonal to style with a new set of environments and learn
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another invariant classifier. Together, the two classifiers are used to guide sentence

generation in a style transfer model along the desired direction. Combining them

with back-translation [109, 145] and language model regularization [47] techniques,

we can generate new types of sentences that have not been seen during training.

We empirically evaluate our proposed model in two sentiment transfer settings

that involve confounding factors. In the first setting, we augment original review

data with special tokens, creating a spurious correlation with sentiment. In the sec-

ond setting, we consider sentiment transfer in which negative and positive reviews

come from non-overlapping product categories. In both cases, we assess the ability

of the model to transfer sentiment while preserving other aspects: special tokens in

the first case and product category in the second. Our experiments demonstrate that

our model successfully achieves both tasks, bringing significant gains over baselines

that do not consider confounding factors. For instance, on the the task of sentiment

transfer from different product categories, the model yields a 28.4% increase in cate-

gory preservation, and according to human evaluation, its success rate is 6.2% higher

than the previous best system.

5.2 Related Work

The task of style transfer is related to paraphrasing, whose goal is to generate multiple

linguistic realizations of the same underlying content [1]. However, style transfer

adds an additional complexity – the requirement to control for a specific realization

characteristic during rewriting. While paraphrasing models have been used in the

past for the task of style transfer, these models are impacted by arbitrary variations

present in paraphrasing datasets [42, 66, 97]. We instead take a data-driven approach

for discerning style from content, where the style is not strictly limited to paraphrasing

and can involve more general attribute transfer such as sentiment and political slant

transfer [96].

Recent work in non-parallel style transfer proposes different techniques such as

cross-alignment [110], delete and retrieval [71], or parallel latent sequences [47]. The
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generation of these approaches all takes place “in-distribution”, i.e., realizing sentences

of the type already seen during training (Figure 5-1.b). The sentences we generate are

by design not seen during training (Figure 5-1.c). Subramanian et al. [117] proposed

multi-attribute style transfer that controls both the sentiment and the category of a

sentence. However, similar to other prior work, they assume access to all sentiment-

category combinations for training. In contrast, we assume that negative and positive

sentences come from non-overlapping categories.

Since we have to infer style from datasets with confounding cues, we make use

of invariant learning [3, 94] to estimate style as an invariant direction. Moreover,

our classifiers need to perform well across different combinations of source/target

datasets and generalize to generated text (out-of-distribution samples) to properly

guide the transfer model. Therefore, our problem is also related to domain adaptation

[9, 34, 35] and domain generalization [11, 86]. Our main contribution is the utilization

of invariance for guiding the generation process.

5.3 Style Transfer with Confounders

We consider two groups of datasets: 𝐺𝐴 = {𝐴1, . . . , 𝐴𝑛} where each 𝐴𝑖 (𝑖 = 1, . . . , 𝑛)

is a dataset consisting of sentences with style 𝑠𝐴 (e.g., negative sentiment), and 𝐺𝐵 =

{𝐵𝑛+1, . . . , 𝐵𝑛+𝑚} where each 𝐵𝑗 (𝑗 = 𝑛+1, . . . , 𝑛+𝑚) similarly conforms to style 𝑠𝐵

(e.g., positive sentiment). In addition to style, a dataset has its own characteristics

different from each other (e.g., category). Our goal is to transfer a sentence 𝑥 of style

𝑠𝐴 into style 𝑠𝐵 (and vice versa) without changing its content or other characteristics.

One attempt is to aggregate collections of sentences in each group 𝐴 = 𝐴1 ∪
· · · ∪𝐴𝑛, 𝐵 = 𝐵𝑛+1 ∪ · · · ∪𝐵𝑛+𝑚 and perform style transfer between them. However,

the specific characteristics of 𝐴𝑖 and 𝐵𝑗 will become confounding factors and will be

changed along with style. Instead, we notice that style is an invariant distinction

between group 𝐺𝐴 and group 𝐺𝐵. In other words, the style difference is stable across

different 𝐴𝑖 and 𝐵𝑗. Therefore, we can learn to isolate it by taking out intra-group

variations. Once we have access to style, we can learn to transfer sentences along this
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direction while preserving other sentence characteristics.

We take a two-step procedure to accomplish this task. We first learn a pair of

invariant classifiers to detect style and orthogonal characteristics. Then we use the

classifiers to guide the learning of a style transfer model. Each part of the model is

described in detail below.

5.3.1 Invariant Classifiers

Background

We make use of Invariant Risk Minimization [3, IRM] to learn our style and orthogonal

classifiers. IRM requires us to specify a set of environments ℰ = {𝑒1, . . . , 𝑒𝐸}, where

each 𝑒 ∈ ℰ represents data {(𝑥𝑒
𝑖 , 𝑦

𝑒
𝑖 )}𝑛𝑒

𝑖=1 collected under a certain environment. The

different environments account for nuisance variation that the classifier should not pay

attention to. The IRM objective is to learn a feature representation that enables a

classifier to be simultaneously optimal for all environments. The rationale is that such

representation likely involves primarily causal features that remain stable regardless of

the nuisance variation. Therefore, the classifier can better generalize to new, unseen

test environments compared to the standard Empirical Risk Minimization (ERM)

classifier trained on the pooled data from all environments.

We adopt the IRMv1 formulation, which does not explicitly separate the represen-

tation from the classifier but treats the classifier output itself as the representation. In

this vein, the objective becomes to minimize the classifier loss across all the data while

penalizing per-environment gradients with respect to any multiplier of the classifier

output:

min
Φ:𝒳→𝒴

∑︁
𝑒∈ℰ

𝑅𝑒(Φ) + 𝜆‖∇𝑤|𝑤=1.0𝑅
𝑒(𝑤 · Φ)‖2 (5.1)

where 𝑅𝑒(𝑓) := E𝑋𝑒,𝑌 𝑒 [ℓ(𝑓(𝑋𝑒), 𝑌 𝑒)] is the risk of 𝑓 under environment 𝑒 (ℓ can be

any loss function), and 𝜆 is a hyperparameter weighting the gradient penalty term.

Gradients would be zero if Φ is per-environment optimal. It remains to define suitable
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Figure 5-2: Illustration of the learning of the invariant classifiers. a) The style clas-
sifier 𝐶𝑠 is trained to be invariant across different pairs of 𝐴𝑖 and 𝐵𝑗 datasets. b)
The orthogonal classifier 𝐶𝑜 is trained to highlight changes in sentences other than
the style identified by 𝐶𝑠.

environments for the invariant classifiers to separate style and confounding factors in

our task.

The Style Classifier

To learn a classifier to distinguish between styles 𝑠𝐴 and 𝑠𝐵 without relying the specific

characteristics of each dataset, we pair each 𝐴𝑖 and each 𝐵𝑗 to form environments:

𝑒𝑖,𝑗 = {(𝑥, 𝑦 = 0) | 𝑥 ∈ 𝐴𝑖} ∪ {(𝑥, 𝑦 = 1) | 𝑥 ∈ 𝐵𝑗} (5.2)

and learn an IRM classifier 𝐶𝑠 : 𝒳 → 𝒴 to predict the group label across environ-

ments {𝑒𝑖,𝑗}1≤𝑖≤𝑛,𝑛+1≤𝑗≤𝑛+𝑚 (cf. Figure 5-2.a). Since all 𝐴𝑖 datasets share style 𝑠𝐴,

and all 𝐵𝑗 datasets share style 𝑠𝐵, style is a feature representation that elicits an

invariant classifier across different environments. Conversely, if the classifier uses any

features specific to 𝐴𝑖/𝐵𝑗, it will not be optimal in another environment consisting

of a different pair 𝐴𝑖′/𝐵𝑗′ , thus violating the IRM constraint.

The Orthogonal Classifier

In addition to requiring the transferred output to have a different style from the

input, we also require it to retain the other characteristics of the input. To detect
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style-independent characteristics, we construct environments based on predictions of

the style classifier 𝐶𝑠. These style-dependent environments serve to illustrate to the

second invariant classifier 𝐶𝑜 what it should not rely on.

Let 𝐷 = {(𝑥, 𝑦 = 0) | 𝑥 ∈ 𝐴} ∪ {(𝑥, 𝑦 = 1) | 𝑥 ∈ 𝐵} be the entire dataset,

aggregate of all corpora. We create two environments1:

𝑒1 = {(𝑥, 𝑦) ∈ 𝐷 | 𝐶𝑠(𝑦|𝑥) > 0.5} (5.3)

𝑒2 = {(𝑥, 𝑦) ∈ 𝐷 | 𝐶𝑠(𝑦|𝑥) ≤ 0.5}

and learn an IRM classifier 𝐶𝑜 : 𝒳 → 𝒴 across {𝑒1, 𝑒2}. In this way, 𝐶𝑜 cannot

depend on the direction quantified by 𝐶𝑠 (i.e., the inferred style), and must find other

orthogonal features to distinguish 𝐴 from 𝐵 (cf. Figure 5-2.b).

Note that if we have successfully transferred a sentence in 𝐴𝑖 to style 𝑠𝐵, then

𝐶𝑠 should predict label 1 for the output sentence because its style has been changed,

while 𝐶𝑜 should continue to assign label 0 as the orthogonal characteristics ought to

have remained intact.

5.3.2 The Style Transfer Model

Based on the pair of invariant classifiers, we can now build a style transfer model to

transfer a sentence to a different style specified by 𝐶𝑠 while preserving other character-

istics controlled by 𝐶𝑜. Formally, we have dataset 𝐷 = {(𝑥, 𝑦)}, where 𝑦 denotes the

group label of sentence 𝑥. We learn a style transfer model 𝑀 : 𝒳 ×𝒴 → 𝒳 that takes

a source sentence 𝑥 and a target group 𝑦 as input, and outputs a revised sentence

that conforms to the style of group 𝑦. The model is learned first in a reconstruction

phase and then in a transfer phase, discussed in turn.

When the input sentence 𝑥 is from group 𝑦, 𝑀 should behave as an autoencoder

1A set of more segmented environments can be created based on the confidence of 𝐶𝑠. However,
we did not observe performance gains with more environments.
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and reconstruct 𝑥. Therefore, we have the reconstruction loss:

ℒrec(𝜃𝑀 ;𝑥, 𝑦) = − log 𝑝𝑀(𝑥|𝑥, 𝑦) (5.4)

where 𝜃𝑀 denotes the parameters of 𝑀 to be learned. We first use ℒrec to train 𝑀 on

𝐷 for an epoch to provide the model with a good initialization to generate realistic

sentences.

After initializing 𝑀 as an autoencoder, we use the pair of invariant classifiers to

guide it towards appropriate style transfer. Given an example (𝑥, 𝑦) in 𝐷, we let

�̃� ∼ 𝑝𝑀(·|𝑥, 1− 𝑦) be the transferred output sampled from the model. If successfully

transferred, �̃� should have style different from 𝑥 according to the style classifier 𝐶𝑠,

and all the other characteristics should be the same as 𝑥 according to the orthogonal

classifier 𝐶𝑜. Namely, 𝐶𝑠 should treat �̃� as coming from a different group, and 𝐶𝑜

should treat �̃� as coming from the same group. These two constraints lead to losses:

ℒ𝐶𝑠(𝜃𝑀 ; 𝑦, �̃�) = − log 𝑝𝐶𝑠(1− 𝑦|�̃�) (5.5)

ℒ𝐶𝑜(𝜃𝑀 ; 𝑦, �̃�) = − log 𝑝𝐶𝑜(𝑦|�̃�) (5.6)

We further use a pre-trained language model 𝐿 and introduce a KL divergence

term 𝐷KL(𝑝𝑀(·|𝑥, 1 − 𝑦)‖𝑝𝐿) to regularize the transfer distribution. Estimating the

KL divergence with one sample of �̃� ∼ 𝑝𝑀(·|𝑥, 1− 𝑦), we have:

ℒLM(𝜃𝑀 ;𝑥, 𝑦, �̃�) = − log 𝑝𝐿(�̃�) + log 𝑝𝑀(�̃�|𝑥, 1− 𝑦) (5.7)

The first term ensures the fluency of the generated sentence �̃�. The second term

corresponds to the negative entropy of the transfer distribution −𝐻𝑝𝑀 (·|𝑥,1−𝑦). Maxi-

mizing this entropy term encourages exploration and helps to avoid bad local optima

of constantly generating similar sentences [47].

Finally, we include the back-translation loss that the original sentence 𝑥 should
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be generated if we take �̃� as input and set the target label to be 𝑦 [109, 145]:

ℒBT(𝜃𝑀 ;𝑥, 𝑦, �̃�) = − log 𝑝𝑀(𝑥|�̃�, 𝑦) (5.8)

Taken together, our overall training objective is:

E(𝑥,𝑦)∼𝐷,�̃�∼𝑝𝑀 (·|𝑥,1−𝑦)[𝜆1ℒ𝐶𝑠 + 𝜆2ℒ𝐶𝑜 + 𝜆3ℒLM + 𝜆4ℒBT] (5.9)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 are hyperparameters to weight different loss terms. In practice,

we use word-level loss for ℒLM and ℒBT (i.e., divided by the sentence length) to make

them comparable in magnitude to ℒ𝐶𝑠 and ℒ𝐶𝑜 . We use Gumbel-Softmax [55] to

approximate the discrete sampling process of �̃� to compute gradients. At test time,

we perform greedy decoding to generate the transferred output.

5.4 Experiments

To assess the ability of our model to perform style transfer in the presence of con-

founders, we consider two experimental settings. In the first experiment, we compose

a synthetic task by modifying sentence punctuation to create a spurious correlation

with sentiment [20]. The model needs to transfer the sentiment while preserving the

punctuation. In the second experiment, we consider sentiment transfer across dif-

ferent product categories. The goal is to transfer sentiment without changing the

product category.

Baselines We consider two variants of our full model: the first is guided by the

style classifier 𝐶𝑠 alone without the orthogonal classifier 𝐶𝑜; the second is guided by

an ERM classifier 𝐶ERM trained on 𝐷, performing direct transfer between 𝐴 and 𝐵

without taking into account confounders. We also compare with He et al. [47], whose

training objective has a back-translation loss and a KL divergence term similar to

ours. They do not use a classifier, but rely on two language models separately trained

on 𝐴 and 𝐵 to promote the transferred sentence to have the target style. Finally,
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we compare with a paraphrasing based method of Krishna et al. [66], which again

transfers between the aggregated 𝐴 and 𝐵 without considering confounding factors.

Model Architecture We implement the classifiers 𝐶𝑠, 𝐶𝑜 using TextCNN [60] with

sliding windows over 3-5 words. On the synthetic task, however, we found that

because the dataset is simple to classify, the training loss of the CNN classifier is close

to 0. This removes any guidance from IRM constraints, degenerating the resulting

classifier to a standard ERM version. Therefore, to ensure that we estimate invariant

classifiers, we use less powerful Bag-of-Words classifiers in the synthetic task. The

employed language model 𝐿 is a 1-layer LSTM trained on 𝐴 ∪ 𝐵. The style transfer

model 𝑀 consists of a 1-layer LSTM encoder and a 1-layer LSTM decoder augmented

with attention mechanism [7]. To achieve style control through 𝑦, we learn two style

embeddings for 𝑦 = 0, 𝑦 = 1 respectively, and add the corresponding one to each word

embedding before feeding to the decoder.

Training Regime and Hyperparameters During the training of the invariant

classifiers, we linearly anneal the gradient penalty coefficient 𝜆 from 0 to 𝜆max over

the first 100K steps, and continue training with 𝜆 = 𝜆max for another 200K steps. We

try 𝜆max in {1000, 3000, 5000} and choose the one with the best performance on the

validation set. In the training of the style transfer model 𝑀 , we linearly anneal the

temperature of Gumbel-Softmax from 1 to 0.1 in the first 20K steps, and then keep it

at 0.1 in the next 10K steps. We try the weights of the loss terms {𝜆1, 𝜆2, 𝜆3, 𝜆4} in

{1, 2, 4}, and select a model that strikes a good balance between output perplexity,

BLEU with input, and accuracies according to the style and orthogonal classifiers.

We note that different weight combinations will lead to different trade-offs [92], and

we provide more detailed results in Appendix D.2.

5.4.1 Sentiment Transfer with Different Punctuation

We aim to emulate the presence of confounding factors by modifying sentences in a

standard sentiment transfer dataset with special symbols. For a sentence 𝑥, we remove

98



its original punctuation, and then add either an exclamation mark “!” or a period

“.” at the end. Let 𝑝 be the probability of adding “!”, and 1 − 𝑝 be the probability

of adding “.”. 𝑝 varies across different corpora. This setting enables us to measure

model’s ability to transfer sentence sentiment without changing its punctuation.

Dataset We adapt the sentiment transfer dataset introduced by Shen et al. [110],

which has 177K negative sentences and 267K positive sentences for training, 2K

negative and positive sentences for validation, and 500 negative and positive sentences

for testing. We obtain new training, validation and test sets using the following

procedure: (1) negative sentences are modified with 𝑝 = 0 to form 𝐴1; (2) positive

sentences are equally divided into two sets, and modified with 𝑝 = 1, 𝑝 = 0.8 to form

𝐵2, 𝐵3 respectively. By construction, the punctuation strongly correlates with the

sentiment. Therefore, a direct transfer between 𝐴1 and 𝐵2 ∪ 𝐵3 is likely to change

the punctuation as well. By observing that sentiment is invariant while 𝑝 is variant

in 𝐵2 and 𝐵3, we aim to transfer only the sentiment, not the punctuation.

Evaluations We assess transfer accuracy by comparing change in sentiment in the

input and output sentences. To automate this evaluation, we utilize a separate senti-

ment classifier trained on negative and positive sentences both modified with 𝑝 = 0.5.

In this way, its prediction will not be affected by punctuation. Note that this classifier

is only used for evaluation, not for training the style transfer model. We also evaluate

the model’s ability to keep punctuation intact during transfer by directly comparing

input and output punctuation. To measure fluency, we report the perplexity of the

output measured by an unbiased language model trained on sentences modified with

𝑝 = 0.5. Finally, we compute the BLEU score of the output with respect to a human

reference [71].

Results We first report performance of the invariant classifiers 𝐶𝑠 and 𝐶𝑜 in the

setting reflecting their intended use in our style transfer model. We reverse the

correlation between punctuation and sentiment labels to simulate style transferred

sentences, and assess their ability to predict the desired aspects. Specifically, we test
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Table 5.1: Classifier accuracy in the synthetic task when the spurious correlation is
reversed.

Model Sentiment Punctuation

𝐶ERM 54.4 45.6
𝐶𝑠 75.3 -
𝐶𝑜 - 89.9

Table 5.2: Automatic evaluation results of the synthetic sentiment transfer task.
Accuracies less than 30 are marked in red.

Model Sentiment Punctuation PPL BLEUref

Krishna et al. [66] 28.4 44.7 53.2 10.1
He et al. [47] 82.2 4.6 27.0 20.4

𝑀 w/ 𝐶ERM 65.1 4.5 40.4 28.8
𝑀 w/ 𝐶𝑠 70.4 5.5 43.3 27.2
𝑀 w/ 𝐶𝑠, 𝐶𝑜 (Ours) 84.3 97.7 48.1 24.3

Input Copy 2.4 100.0 34.0 32.8
Reference 76.8 100.0 42.3 100.0

the accuracy of classifiers on positive sentences modified with 𝑝 = 0 and negative

sentences modified with 𝑝 = 1, 𝑝 = 0.8. Table 5.1 shows results of 𝐶𝑠 and 𝐶𝑜 com-

pared with the standard 𝐶ERM classifier trained on 𝐷. As expected, 𝐶ERM performs

poorly, mixing sentiment and punctuation clues. In contrast, the invariant classifier

successfully separating the two aspects, achieving accuracy of 75.3% on sentiment

prediction and 89.9% on punctuation prediction.

Table 5.2 summarizes style transfer results. The paraphrasing-based method

of Krishna et al. [66] is not suitable for sentiment transfer that requires semantic

changes, as shown by its low sentiment accuracy of 28.4%. Moreover, it has the lowest

BLEU score because it introduces unnecessary rewriting learned from the paraphras-

ing dataset. Despite reaching high sentiment accuracy, the direct transfer methods

of He et al. [47] and 𝑀 guided by 𝐶ERM have low punctuation accuracy (4.6% and

4.5%, respectively). Our full model achieves both high sentiment accuracy (84.3%)

and high punctuation accuracy (97.7%). The reliance on the orthogonal classifier

𝐶𝑜 is proved critical – its omission results in dramatic drop of punctuation accuracy

100



Table 5.3: Example outputs of the synthetic sentiment transfer task.

Input the sales people here are terrible .
Reference the sales people are great .

Krishna et al. the people here are absolutely terrible .
He et al. the sales people here are great !
𝑀 w/ 𝐶ERM the sales people here are amazing !
𝑀 w/ 𝐶𝑠 the sales people here are fantastic !
Ours the sales people here are amazing .

Input great food but horrible staff and very very rude workers .
Reference great food and excellent staff and very very nice workers .

Krishna et al. great food , but very poor service .
He et al. great food but excellent staff and very very friendly workers !
𝑀 w/ 𝐶ERM great food and great staff and very very nice workers !
𝑀 w/ 𝐶𝑠 great food but great staff and very very friendly workers !
Ours great food and great staff and very very friendly workers .

Input the food is delicious and plentiful !
Reference the food was tough and dry !

Krishna et al. the food is delicious and plentiful ! ” .
He et al. the food is mediocre and plentiful .
𝑀 w/ 𝐶ERM the food was mediocre and plentiful .
𝑀 w/ 𝐶𝑠 the food is mediocre and plentiful .
Ours the food was mediocre , too !

Input excellent combination of flavors , very unique !
Reference the flavors are nothing to write home about !

Krishna et al. very unique combination of flavors , very unique ! ” .
He et al. horrible customer service .
𝑀 w/ 𝐶ERM terrible combination of flavors , very disappointing .
𝑀 w/ 𝐶𝑠 terrible combination of flavors , not unique .
Ours terrible combination of flavors , not outstanding !
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(5.5%). Output examples in Table 5.3 provide multiple illustrations of these phenom-

ena: Krishna et al. [66] often paraphrases the input without changing the sentiment,

while other models consistently change punctuation; only our full model successfully

transfers the sentiment without changing the punctuation.

5.4.2 Sentiment Transfer with Different Categories

Our second experiment focuses on sentiment transfer with product category as a

confounding factor. Previous work took negative and positive reviews from the same

category [71]. Our setting is more challenging where negative and positive reviews

belong to distinct, non-overlapping categories. The model needs to infer that it is the

sentiment to be transferred, not the category.

Dataset We use the 5-core Amazon review data [89], focusing on four large product

categories: Clothing Shoes and Jewelry (CSJ), Home and Kitchen (HK), Electronics

(E), and Cell Phone and Accessories (CPA). We further filter reviews based on their

length, keeping reviews of length 5-20 words. Following standard practice, reviews

with rating above three are considered positive, and those below three are considered

negative. Reviews with rating three are discarded. Specifically, 𝐴1 consists of negative

reviews from the CSJ category, 𝐴2 - negative reviews from HK, 𝐵3 - positive reviews

from E, and 𝐵4 - positive from CPA. We create a dataset of 150K sentences for

each category, in which 130K are used for training, 10K for validation and 10K for

testing. Note that we do not use any review data of different sentiments from the

same category.

Evaluations To assess sentiment transfer accuracy automatically, we train a clas-

sifier on complete data which includes negative and positive reviews from all four

categories. Its test accuracy is 96.0%. Moreover, we train a 4-way category classifier

using complete data to assess whether the output preserves input product category.

It has test accuracy2 71.0%. As in the previous task, we report the perplexity of the
2This accuracy can be attributed to the fact that some short sentences do not have clear indicators

of their product category.
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Table 5.4: Automatic evaluation results of sentiment transfer from different cate-
gories.

Model Sentiment Category PPL BLEUsrc

Krishna et al. [66] 22.6 57.4 35.8 19.2
He et al. [47] 77.7 22.5 44.6 47.6

𝑀 w/ 𝐶ERM 89.6 14.6 42.4 47.0
𝑀 w/ 𝐶𝑠 78.0 36.4 45.1 59.2
𝑀 w/ 𝐶𝑠, 𝐶𝑜 (Ours) 79.9 50.9 49.2 57.4

Input Copy 3.1 75.3 34.5 100.0

Table 5.5: Human evaluation results of sentiment transfer from different categories.

Model Sentiment Content Fluency Success

Krishna et al. [66] 1.9 4.2 4.4 11.8%
He et al. [47] 3.3 3.6 4.0 24.3%
Ours 3.4 4.1 4.1 30.5%

output measured by an unbiased language model trained on the complete data. Note

that these omniscient models are used only for evaluation and not for training the

style transfer model. Since we do not have human references for this task, we com-

pute the BLEU score with respect to source sentences as a rough indicator of content

preservation [143]. In addition, we conduct human evaluation by asking human judges

to rate each output on a Likert scale from 1 to 5 on three criteria: sentiment transfer,

content preservation, and fluency. We consider a generated output successful if it is

rated 4 or 5 on all three criteria. We evaluated 200 randomly sampled examples (100

negative and 100 positive) and collected two annotations for each sentence.

Results Table 5.4 shows automatic evaluation results for different models. Our

model yields significant performance gains over the baselines, achieving 57.3% abso-

lute increase in sentiment transfer compared to Krishna et al. [66], and 28.4% increase

in category preservation compared to He et al. [47]. The human evaluation results in

Table 5.5 further verify the superiority of our model. Krishna et al. [66] scores the

highest in fluency as their model is fine-tuned from GPT2-Large. Our model achieves

the highest sentiment transfer score and the highest success rate.
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Table 5.6: Example outputs of sentiment transfer from different categories.

Clothing, Shoes and Jewelry (negative → positive)

Input this shirt was too tight . the sizing seems off .
Krishna et al. the shirt is too tight .
He et al. this case was great . the protection seems great .
Ours this shirt works just perfect . the sizing seems well .

Home and Kitchen (negative → positive)

Input the containers do not lock well and are made of low quality materials .
Krishna et al. the containers do not fit securely and are made from poor quality material .
He et al. the phones work well and has made of sound quality of low quality materials .
Ours the containers does the job well and are made of high quality materials .

Electronics (positive → negative)

Input exactly as advertised . converted a molex plug into a sata
Krishna et al. the molex plug was convert to sata as advertised .
He et al. way too big . leaves a inaccurate cut into a bath
Ours not as advertised . converted a molex plug into a sata

Cell Phones and Accessories (positive → negative)

Input very sturdy and helpful to use while driving .
Krishna et al. drives very well and is very useful .
He et al. very stiff and weak to use while washing .
Ours very thin and uncomfortable to use while driving .

Example outputs in Table 5.6 show that our model successfully isolates sentiment

from product category, preserving the latter during transfer. In contrast, He et al.

[47] mixes up categories by changing product specific nouns, such as rewriting “shirt”

to “case”, “containers” to “phones”, and “driving” to “washing”. Table D.3.4 in the

appendix provide more examples, some of which illustrate several failure modes of the

model. For instance, when transferring sentiment of the sentence “very poor quality

. crooked on one end .”, the model only modifies the sentiment of the first clause,

leaving the second clause intact. Another failure case is the use of inappropriate

adjectives, such as rewriting “the drive works as designed” to “the drive is too large”.
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5.5 Conclusion

In this paper, we consider a new, challenging version of the style transfer task, where

the model has to exclude confounders and infer the desired transfer direction from

data. We propose to learn a pair of invariant classifiers to detect style and orthogonal

characteristics, and then use them to guide a style transfer model. We empirically

demonstrate significant performance gains over direct style transfer in two experi-

mental settings. While this technology shows significant promise, it still requires

further development to be used in practice. However, as style transfer algorithms

continue to advance, their ability to support rapid and large-scale content modifica-

tion will increase, which may promote the dissemination of fake news and other forms

of misinformation.
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Chapter 6

Conclusion

In this thesis, we have presented a serious of models and techniques to control language

generation. First, we proposed the blank language model that supports generation

location control. By dynamically filling and expanding blanks, the model can take

account of the entire context during generation without the need for complex inference

algorithms. Then, we looked at text autoencoders with latent variable control. We

conducted in-depth theoretical and experimental analyses of the latent space geometry

of text autoencoders, and showed that denoising promotes neighborhood preservation,

enabling meaningful text manipulation through latent space operations. Finally, we

studied an important application of controlling language style. A key challenge is the

lack of supervised data. We first leveraged distributional alignment to perform style

transfer from non-parallel data, and then further accounted for confounders in the

data and exploited invariance to isolate them. Our approaches have demonstrated

success on various controlled generation tasks, including text filling, ancient text

restoration, sentence interpolation, tense transfer, and sentiment transfer.

As text generation models continue to advance and become more widely used, we

must be very mindful of the impact they may have on society. We now provide some

future research directions on fairness and privacy that follow from this thesis:
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Future Research

Fairness Biases in training data can cause language models to generate biased

content. For example, given the prompt “The doctor was a”, GPT-3 will continue

it with “man” with a much higher probability than “woman”, and the opposite when

prompted with “The nurse was a” [14]. Such biases in models will entrench existing

stereotypes that could harm people in the relevant groups.

One way to eliminate this bias is to require the same number of female and male

sentences in sentences containing “doctor”. Conditioning on the presence of “doctor”

can be readily expressed as “ doctor ” in a blank language model. We can add

fairness constraints to the training of blank language models to ensure fair generation.

Another interesting research direction is to use invariant learning discussed in

Chapter 5 to study which words have time-varying correlations with gender and which

words have invariant correlations. For example, “engineer” may have a strong corre-

lation with gender, but this correlation is variant, as we now have more and more

female engineers. In contrast, gender-specific words like “boys” and “girls” as well as

physiological features like “beard” would have invariant correlations. This study can

also help us understand how people’s perceptions of gender change over time, and

perhaps help us spot persistent gender biases that do not improve.

Privacy While better language models can be trained by aggregating data together,

in many cases users may want to keep their personal data such as chat logs private.

One possible way to achieve privacy is to share encodings rather than raw text data.

So each user trains a private autoencoder separately and sends the encodings to a

central server, the server trains a conditional generative model on all the encodings,

and then each user decodes the model using their own decoder. We hope that the

encodings still preserve most of the structure of language so that the server can benefit

from more data to train a better generative model. Meanwhile, the encodings should

be difficult to revert to plain text and should not leak too much information. We

hypothesize that our denoising text autoencoder has the potential for this purpose.
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Appendix A

Blank Language Models

A.1 Implementation Details for Text Infilling Base-

lines

A.1.1 Insertion Transformer

We implement the Insertion Transformer in our own framework, using the same Trans-

former encoder module as for BLM and replacing the prediction layers by Insertion

Transformer’s mechanism. The canvas is also generated according to the training

procedure of Insertion Transformer.

A.1.2 Masked Language Model

We use the RobertaForMaskedLM architecture in the Transformers library for MLM

[76, 127].

At test time, the model is given an easier version of the text infilling task where

blanks are expanded into sequences of ⟨mask⟩ tokens of the target length (or equiva-

lently, the model uses an oracle to predict the length of the infilling).

We experiment with three decoding strategies: (1) one-shot: the model predicts

all masks simultaneously (2) left-to-right: the model fills in the masks from left to

right (3) confident-first: the model fills one mask at a time that has the highest score.
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We report results for the confident-first strategy which has the best performance.

A.1.3 BERT+LM

We use the bert-base-uncased model as served by the Transformers library [24, 127].

The left-to-right language model is a Transformer decoder to predict tokens in a blank.

Its input word embedding is concatenated with BERT’s output in the blank position

at each time step.

A.1.4 Seq2seq-full and Seq2seq-fill

For both seq2seq baselines, we use Fairseq’s transformer_iwslt_de_en architecture

[91]. To generate training data, we apply the blanking procedure to the input dataset

and generate 𝑘 copies of each sentence with different masks. We experiment with

𝑘 ∈ {1, 10, 100} and report the best performance, obtained by 𝑘 = 10.
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A.2 Monte-Carlo Estimate of Perplexity

For a sentence 𝑥 of length 𝑛, we estimate 𝑝(𝑥; 𝜃) in Eq. (2.5) with 𝑚 samples:

𝑋𝑚 =
𝑛!

𝑚

𝑚∑︁
𝑖=1

𝑝(𝑥, 𝜎𝑖; 𝜃)

where 𝜎𝑖’s are randomly sampled orders.

Note that 𝑋𝑚 is an unbiased estimate of 𝑝(𝑥; 𝜃):

E[𝑋𝑚] = 𝑝(𝑥; 𝜃)

The estimated PPL is accordinly:

𝑌𝑚 = 𝑋−1/𝑛
𝑚

Since 𝑧−1/𝑛 is a convex function of 𝑧,

E[𝑌𝑚] = E[𝑋−1/𝑛
𝑚 ] ≥ E[𝑋𝑚]

−1/𝑛 = 𝑝(𝑥; 𝜃)−1/𝑛

i.e., the expectation of the estimated PPL ≥ the actual PPL. As 𝑚 increases, the

variance of 𝑋𝑚 decreases, and the inequality becomes tighter.

Hence, we will observe that as 𝑚 increases, the estimated PPL becomes smaller

and converges to the real PPL.
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A.3 Generation Trajectory

also
the also
the also choice
the salsa also choice
the salsa was also choice
the salsa was also only choice
the salsa was also only choice .
the salsa was also my only choice .

,
, terrible
poor , terrible
poor , terrible ,
poor , terrible , very
poor selection , terrible , very

very poor selection , terrible , very
very poor selection , service terrible , very
very poor selection , service terrible , very !
very poor selection , service terrible , very slow !

favorite
my favorite
my favorite pittsburgh
my favorite pittsburgh .
my favorite restaurant pittsburgh .
my favorite restaurant in pittsburgh .

the
is the
is the .
is the are .
food is the are .
food is the are friendly .
food is and the are friendly .
food is delicious and the are friendly .
food is delicious and the are very friendly .
food is delicious and the owners are very friendly .

the food is delicious and the owners are very friendly .

Figure A-1: Examples of BLM generation trajectory on the Yelp review dataset.
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Appendix B

Denoising Text Autoencoders

B.1 Wasserstein Distance

The AAE objective can be connected to a relaxed form of the Wasserstein distance

between model and data distributions [121]. Specifically, for cost function 𝑐(·, ·) :

𝒳 × 𝒳 → R and deterministic decoder mapping 𝐺 : 𝒵 → 𝒳 , it holds that:

inf
Γ∈𝒫(𝑥∼𝑝data,𝑦∼𝑝𝐺)

E(𝑥,𝑦)∼Γ[𝑐(𝑥, 𝑦)]

= inf
𝑞(𝑧|𝑥):𝑞(𝑧)=𝑝(𝑧)

E𝑝data(𝑥)E𝑞(𝑧|𝑥)[𝑐(𝑥,𝐺(𝑧))] (B.1)

where the minimization over couplings Γ with marginals 𝑝data and 𝑝𝐺 can be re-

placed with minimization over conditional distributions 𝑞(𝑧|𝑥) whose marginal 𝑞(𝑧) =

E𝑝data(𝑥)[𝑞(𝑧|𝑥)] matches the latent prior distribution 𝑝(𝑧). Relaxing this marginal con-

straint via a divergence penalty 𝐷(𝑞(𝑧)‖𝑝(𝑧)) estimated by adversarial training, one

recovers the AAE objective (Eq. 3.1). In particular, AAE on discrete 𝑥 with the cross-

entropy loss is minimizing an upper bound of the total variation distance between

𝑝data and 𝑝𝐺, with 𝑐 chosen as the indicator cost function [143].

Our model is optimizing over conditional distributions 𝑞(𝑧|𝑥) of the form (3.6), a

subset of all possible conditional distributions. Thus, after introducing input pertur-

bations, our method is still minimizing an upper bound of the Wasserstein distance

between 𝑝data and 𝑝𝐺 described in (B.1).



B.2 Toy Experiments with Latent Dimension 5

Figure B.2.1: 𝑡-SNE visualization of 5-D latent representations learned by AAE and
DAAE when mapping clustered sequences in 𝒳 = {0, 1}50 to 𝒵 = R5. The training
data stem from 5 underlying clusters, with 100 sequences sampled from each (colored
accordingly by cluster identity).
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B.3 Proofs

Theorem 1. For any one-to-one mapping 𝐸 from {𝑥1, . . . , 𝑥𝑛} to {𝑧1, . . . , 𝑧𝑛}, the

optimal value of objective max𝐺∈𝒢𝐿

1
𝑛

∑︀𝑛
𝑖=1 log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑖)) is the same.

Proof. Consider two encoder matchings 𝑥𝑖 to 𝑧𝛼(𝑖) and 𝑥𝑖 to 𝑧𝛽(𝑖), where both 𝛼 and 𝛽

are permutations of the indices {1, . . . , 𝑛}. Suppose 𝐺𝛼 is the optimal decoder model

for the first matching (with permutations 𝛼). This implies

𝑝𝐺𝛼 = argmax
𝐺∈𝒢𝐿

𝑛∑︁
𝑖=1

log 𝑝𝐺(𝑥𝑖|𝑧𝛼(𝑖))

Now let 𝑝𝐺𝛽
(𝑥𝑖|𝑧𝑗) = 𝑝𝐺𝛼(𝑥𝛽𝛼−1(𝑖)|𝑧𝑗),∀𝑖, 𝑗. Then 𝐺𝛽 can achieve exactly the same log-

likelihood objective value for matching 𝛽 as 𝐺𝛼 for matching 𝛼, while still respecting

the Lipschitz constraint.
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Theorem 2. Let 𝑑 be a distance metric over 𝒳 . Suppose 𝑥1, 𝑥2, 𝑥3, 𝑥4 satisfy that

with some 𝜖 > 0: 𝑑(𝑥1, 𝑥2) < 𝜖, 𝑑(𝑥3, 𝑥4) < 𝜖, and 𝑑(𝑥𝑖, 𝑥𝑗) > 𝜖 for all other (𝑥𝑖, 𝑥𝑗)

pairs. In addition, 𝑧1, 𝑧2, 𝑧3, 𝑧4 satisfy that with some 0 < 𝛿 < 𝜁: ‖𝑧1 − 𝑧2‖ < 𝛿,

‖𝑧3 − 𝑧4‖ < 𝛿, and ‖𝑧𝑖 − 𝑧𝑗‖ > 𝜁 for all other (𝑧𝑖, 𝑧𝑗) pairs. Suppose our perturbation

process 𝐶 reflects local 𝒳 geometry with: 𝑝𝐶(𝑥𝑖|𝑥𝑗) = 1/2 if 𝑑(𝑥𝑖, 𝑥𝑗) < 𝜖 and = 0

otherwise. For 𝛿 < 1/𝐿 · (2 log (𝜎(𝐿𝜁)) + log 2) and 𝜁 > 1/𝐿 · log
(︀
1/(

√
2− 1)

)︀
, the

denoising objective max𝐺∈𝒢𝐿

1
𝑛

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑝𝐶(𝑥𝑗|𝑥𝑖) log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑗)) (where 𝑛 = 4)

achieves the largest value when encoder 𝐸 maps close pairs of 𝑥 to close pairs of 𝑧.

Proof. Let [𝑛] denote {1, . . . , 𝑛}, and assume without loss of generality that the en-

coder 𝐸 maps each 𝑥𝑖 to 𝑧𝑖. We also define 𝐴 = {1, 2}, 𝐵 = {3, 4} as the two 𝑥-pairs

that lie close together. For our choice of 𝐶(𝑥), the training objective to be maximized

is:

∑︁
𝑖,𝑗∈𝐴

log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑗)) +
∑︁
𝑘,ℓ∈𝐵

log 𝑝𝐺(𝑥𝑘|𝐸(𝑥ℓ))

=
∑︁
𝑖,𝑗∈𝐴

log 𝑝𝐺(𝑥𝑖|𝑧𝑗) +
∑︁
𝑘,ℓ∈𝐵

log 𝑝𝐺(𝑥𝑘|𝑧ℓ) (B.2)

The remainder of our proof is split into two cases:

Case 1. ||𝑧𝑗 − 𝑧ℓ|| > 𝜁 for 𝑗 ∈ 𝐴, ℓ ∈ 𝐵

Case 2. ||𝑧𝑗 − 𝑧ℓ|| < 𝛿 for 𝑗 ∈ 𝐴, ℓ ∈ 𝐵

Under Case 1, 𝑥 points that lie far apart also have 𝑧 encodings that remain far

apart. Under Case 2, 𝑥 points that lie far apart have 𝑧 encodings that lie close

together. We complete the proof by showing that the achievable objective value in

Case 2 is strictly worse than in Case 1, and thus an optimal encoder/decoder pair

would avoid the 𝑥, 𝑧 matching that leads to Case 2.

In Case 1 where ||𝑧𝑗 − 𝑧ℓ|| > 𝜁 for all 𝑗 ∈ 𝐴, ℓ ∈ 𝐵, we can lower bound the

training objective (B.2) by choosing:

𝑝𝐺(𝑥𝑖|𝑧𝑗) =

⎧⎪⎨⎪⎩(1− 𝛾)/2 if 𝑖, 𝑗 ∈ 𝐴 or 𝑖, 𝑗 ∈ 𝐵

𝛾/2 otherwise
(B.3)
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with 𝛾 = 𝜎(−𝐿𝜁) ∈ (0, 1
2
), where 𝜎(·) denotes the sigmoid function. Note that this

ensures
∑︁
𝑖∈[4]

𝑝𝐺(𝑥𝑖|𝑧𝑗) = 1 for each 𝑗 ∈ [4], and does not violate the Lipschitz condition

from Assumption 2 since:

| log 𝑝𝐺(𝑥𝑖|𝑧𝑗)− log 𝑝𝐺(𝑥𝑖|𝑧ℓ)|⎧⎪⎨⎪⎩ = 0 if 𝑗, ℓ ∈ 𝐴 or 𝑗, ℓ ∈ 𝐵

≤ log ((1− 𝛾)/𝛾) otherwise

and thus remains ≤ 𝐿||𝑧𝑗 − 𝑧ℓ|| when 𝛾 = 𝜎(−𝐿𝜁) ≥ 𝜎(−𝐿||𝑧𝑗 − 𝑧ℓ||) = 1/[1 +

exp(𝐿||𝑧𝑗 − 𝑧ℓ||)].

Plugging the 𝑝𝐺(𝑥|𝑧) assignment from (B.3) into (B.2), we see that an optimal

decoder can obtain training objective value ≥ 8 log [𝜎(𝐿𝜁)/2] in Case 1 where ||𝑧𝑗 −
𝑧ℓ|| > 𝜁, ∀𝑗 ∈ 𝐴, ℓ ∈ 𝐵.

Next, we consider the alternative case where ||𝑧𝑗 − 𝑧ℓ|| < 𝛿 for 𝑗 ∈ 𝐴, ℓ ∈ 𝐵.

For 𝑖, 𝑗 ∈ 𝐴 and for all ℓ ∈ 𝐵, we have:

log 𝑝𝐺(𝑥𝑖|𝑧𝑗) ≤ log 𝑝𝐺(𝑥𝑖|𝑧ℓ) + 𝐿||𝑧𝑗 − 𝑧ℓ|| (by Assumption 2)

≤ log 𝑝𝐺(𝑥𝑖|𝑧ℓ) + 𝐿𝛿

≤ 𝐿𝛿 + log

[︃
1−

∑︁
𝑘∈𝐵

𝑝𝐺(𝑥𝑘|𝑧ℓ)
]︃

(since
∑︀

𝑘 𝑝𝐺(𝑥𝑘|𝑧ℓ) ≤ 1)

Continuing from (B.2), the overall training objective in this case is thus:
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∑︁
𝑖,𝑗∈𝐴

log 𝑝𝐺(𝑥𝑖|𝑧𝑗) +
∑︁
𝑘,ℓ∈𝐵

log 𝑝𝐺(𝑥𝑘|𝑧ℓ)

≤ 4𝐿𝛿 +
∑︁
𝑖,𝑗∈𝐴

min
ℓ∈𝐵

log

[︃
1−

∑︁
𝑘∈𝐵

𝑝𝐺(𝑥𝑘|𝑧ℓ)
]︃

+
∑︁
𝑘,ℓ∈𝐵

log 𝑝𝐺(𝑥𝑘|𝑧ℓ)

≤ 4𝐿𝛿 +
∑︁
ℓ∈𝐵

[︃
2 log

(︃
1−

∑︁
𝑘∈𝐵

𝑝𝐺(𝑥𝑘|𝑧ℓ)
)︃

+
∑︁
𝑘∈𝐵

log 𝑝𝐺(𝑥𝑘|𝑧ℓ)
]︃

≤ 4𝐿𝛿 − 12 log 2

using the fact that the optimal decoder for the bound in this case is: 𝑝𝐺(𝑥𝑘|𝑧ℓ) = 1/4

for all 𝑘, ℓ ∈ 𝐵.

Finally, plugging our range for 𝛿 stated in the Theorem 2, it shows that the

best achievable objective value in Case 2 is strictly worse than the objective value

achievable in Case 1. Thus, the optimal encoder/decoder pair under the AAE with

perturbed 𝑥 will always prefer the matching between {𝑥1, . . . , 𝑥4} and {𝑧1, . . . , 𝑧4}
that ensures nearby 𝑥𝑖 are encoded to nearby 𝑧𝑖 (corresponding to Case 1).
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Theorem 3. Suppose 𝑥1, . . . , 𝑥𝑛 are divided into 𝑛/𝐾 clusters of equal size 𝐾,

with 𝑆𝑖 denoting the cluster index of 𝑥𝑖. Let the perturbation process 𝐶 be uni-

form within clusters, i.e. 𝑝𝐶(𝑥𝑖|𝑥𝑗) = 1/𝐾 if 𝑆𝑖 = 𝑆𝑗 and = 0 otherwise. With

a one-to-one encoder mapping 𝐸 from {𝑥1, . . . , 𝑥𝑛} to {𝑧1, . . . , 𝑧𝑛}, the denoising ob-

jective max𝐺∈𝒢𝐿

1
𝑛

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑝𝐶(𝑥𝑗|𝑥𝑖) log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑗)) has an upper bound: (1/𝑛2) ·∑︀

𝑖,𝑗:𝑆𝑖 ̸=𝑆𝑗
log 𝜎(𝐿‖𝐸(𝑥𝑖)− 𝐸(𝑥𝑗)‖)− log𝐾.

Proof. Without loss of generality, let 𝐸(𝑥𝑖) = 𝑧𝑖 for notational convenience. We con-

sider what is the optimal decoder probability assignment 𝑝𝐺(𝑥𝑖|𝑧𝑗) under the Lipschitz

constraint 2.

The objective of the AAE with perturbed 𝑥 is to maximize:

1

𝑛

∑︁
𝑖

∑︁
𝑗

𝑝𝐶(𝑥𝑗|𝑥𝑖) log 𝑝𝐺(𝑥𝑖|𝐸(𝑥𝑗))

=
1

𝑛𝐾

∑︁
𝑗

∑︁
𝑖:𝑆𝑖=𝑆𝑗

log 𝑝𝐺(𝑥𝑖|𝑧𝑗)

We first show that the optimal 𝑝𝐺(·|·) will satisfy that the same probability is assigned

within a cluster, i.e. 𝑝(𝑥𝑖|𝑧𝑗) = 𝑝(𝑥𝑘|𝑧𝑗) for all 𝑖, 𝑘 s.t. 𝑆𝑖 = 𝑆𝑘. If not, let 𝑃𝑠𝑗 =∑︀
𝑖:𝑆𝑖=𝑠 𝑝𝐺(𝑥𝑖|𝑧𝑗), and we reassign 𝑝𝐺′(𝑥𝑖|𝑧𝑗) = 𝑃𝑆𝑖𝑗/𝐾. Then 𝐺′ still conforms to the

Lipschitz constraint if 𝐺 meets it, and 𝐺′ will have a larger target value than 𝐺.

Now let us define 𝑃𝑗 =
∑︀

𝑖:𝑆𝑖=𝑆𝑗
𝑝𝐺(𝑥𝑖|𝑧𝑗) = 𝐾 · 𝑝𝐺(𝑥𝑗|𝑧𝑗) (0 ≤ 𝑃𝑗 ≤ 1). The

objective becomes:

max
𝑝𝐺

1

𝑛𝐾

∑︁
𝑗

∑︁
𝑖:𝑆𝑖=𝑆𝑗

log 𝑝𝐺(𝑥𝑖|𝑧𝑗)

= max
𝑝𝐺

1

𝑛

∑︁
𝑗

log 𝑝𝐺(𝑥𝑗|𝑧𝑗)

= max
𝑝𝐺

1

𝑛

∑︁
𝑗

log𝑃𝑗 − log𝐾

= max
𝑝𝐺

1

2𝑛2

∑︁
𝑖

∑︁
𝑗

(log𝑃𝑖 + log𝑃𝑗)− log𝐾

≤ 1

2𝑛2

∑︁
𝑖

∑︁
𝑗

max
𝑝𝐺

(log𝑃𝑖 + log𝑃𝑗)− log𝐾
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Consider each term max𝑝𝐺(log𝑃𝑖 + log𝑃𝑗): when 𝑆𝑖 = 𝑆𝑗, this term can achieve

the maximum value 0 by assigning 𝑃𝑖 = 𝑃𝑗 = 1; when 𝑆𝑖 ̸= 𝑆𝑗, the Lipschitz constraint

ensures that:

log(1− 𝑃𝑖) ≥ log𝑃𝑗 − 𝐿‖𝑧𝑖 − 𝑧𝑗‖

log(1− 𝑃𝑗) ≥ log𝑃𝑖 − 𝐿‖𝑧𝑖 − 𝑧𝑗‖

Therefore:

log𝑃𝑖 + log𝑃𝑗 ≤ 2 log 𝜎(𝐿‖𝑧𝑖 − 𝑧𝑗‖)

Overall, we thus have:

max
𝑝𝐺

1

𝑛𝐾

∑︁
𝑗

∑︁
𝑖:𝑆𝑖=𝑆𝑗

log 𝑝𝐺(𝑥𝑖|𝑧𝑗)

≤ 1

𝑛2

∑︁
𝑖,𝑗:𝑆𝑖 ̸=𝑆𝑗

log 𝜎(𝐿‖𝑧𝑖 − 𝑧𝑗‖)− log𝐾
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B.4 Experimental Details

We use the same architecture to implement all models with different objectives. The

encoder 𝐸, generator 𝐺, and the language model used to compute Forward/Reverse

PPL are one-layer LSTMs with hidden dimension 1024 and word embedding dimen-

sion 512. The last hidden state of the encoder is projected into 128/256 dimensions

to produce the latent code 𝑧 for Yelp/Yahoo datasets respectively, which is then pro-

jected and added with input word embeddings fed to the generator. The discriminator

𝐷 is an MLP with one hidden layer of size 512. 𝜆 of AAE based models is set to

10 to ensure the latent codes are indistinguishable from the prior. All models are

trained via the Adam optimizer [63] with learning rate 0.0005, 𝛽1 = 0.5, 𝛽2 = 0.999.

At test time, encoder-side perturbations are disabled, and we use greedy decoding to

generate 𝑥 from 𝑧.
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B.5 Human Evaluation

For the tense transfer experiment, the human annotator is presented with a source

sentence and two outputs (one from each approach, presented in random order) and

asked to judge which one successfully changes the tense while being faithful to the

source, or whether both are good/bad, or if the input is not suitable to have its

tense inverted. We collect labels from two human annotators and if they disagree, we

further solicit a label from the third annotator.

122



B.6 Neighborhood Preservation

Here we include non-generative models AE, DAE and repeat the neighborhood preser-

vation analysis in Section 3.5.1. We find that an untrained RNN encoder from random

initialization has a good recall rate, and we suspect that SGD training of vanilla AE

towards only the reconstruction loss will not overturn this initial bias. Note that de-

noising still improves neighborhood preservation in this case. Also note that DAAE

has the highest recall rate among all generative models that have a latent prior im-

posed.

Yelp Yahoo

Figure B.6.2: Recall rate of 10 nearest neighbors in the sentence space retrieved by 𝑘
nearest neighbors in the latent space of different autoencoders on the Yelp and Yahoo
datasets.
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Table B.6.1: Examples of nearest neighbors in the latent Euclidean space of AAE
and DAAE on Yahoo dataset.

Source how many gospels are there that were n’t included in the bible ?

AAE there are no other gospels that were n’t included in the bible .
how many permutations are there for the letters in the word _UNK ’ ?
anyone else picked up any of the _UNK in the film ?
what ’s the significance of the number 40 in the bible ?
how many pieces of ribbon were used in the _UNK act ?

DAAE there are no other gospels that were n’t included in the bible .
how many litres of water is there in the sea ?
how many _UNK gods are there in the classroom ?
how many pieces of ribbon were used in the _UNK act ?
how many times have you been grounded in the last year ?

Source how do i change colors in new yahoo mail beta ?

AAE how should you present yourself at a _UNK speaking exam ?
how can i learn to be a hip hop producer ?
how can i create a _UNK web on the internet ?
how can i change my _UNK for female not male ?
what should you look for in buying your first cello ?

DAAE how do i change that back to english ?
is it possible to _UNK a yahoo account ?
how do i change my yahoo toolbar options ?
what should you look for in buying your first cello ?
who do you think should go number one in the baseball fantasy draft , pujols or _UNK ?
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B.7 Generation-Reconstruction Results on the Ya-

hoo Dataset
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p = 1
<latexit sha1_base64="ha4QS8DD+94qqDrze0UWo2Ckk0o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoBeh4MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfy0UwS9CM6lDzkjBorPSQ3Xr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5JWrepdVGv3l5V6LY+jCCdwCufgwRXU4Q4a0AQGQ3iGV3hzhPPivDsfi9aCk88cwx84nz/IRY1q</latexit>

�1 = 0.01
<latexit sha1_base64="bloHzXcIQny3d2FBJejCRR0ISgE=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQTdC0Y3LCvYB7VgymUwbmkmGJKOUof/hxoUibv0Xd/6NaTsLbT0QcjjnXHJzgoQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2BNORO0aZjhtJMoiuOA03Ywupn67UeqNJPi3owT6sd4IFjECDZWeuhxGw1x37tyq67XL1fsNQNaJl5OKpCj0S9/9UJJ0pgKQzjWuuu5ifEzrAwjnE5KvVTTBJMRHtCupQLHVPvZbOsJOrFKiCKp7BEGzdTfExmOtR7HgU3G2Az1ojcV//O6qYku/YyJJDVUkPlDUcqRkWhaAQqZosTwsSWYKGZ3RWSIFSbGFlWyJXiLX14mrVrVO6vW7s4r9eu8jiIcwTGcggcXUIdbaEATCCh4hld4c56cF+fd+ZhHC04+cwh/4Hz+ALGUkVM=</latexit>

�1 = 0.2
<latexit sha1_base64="XVlFqVG7AxVj1iPPG+FjbbITpFY=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgKiRV0I1QdOOygn1AG8pkMmmHTiZxZlIood/hxoUibv0Yd/6N0zQLbT0wcDjnXO6d4yecKe0431ZpbX1jc6u8XdnZ3ds/qB4etVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj+/mfmdCpWKxeNTThHoRHgoWMoK1kbw+N9EAD9wbx64PqjXHdnKgVeIWpAYFmoPqVz+ISRpRoQnHSvVcJ9FehqVmhNNZpZ8qmmAyxkPaM1TgiCovy4+eoTOjBCiMpXlCo1z9PZHhSKlp5JtkhPVILXtz8T+vl+rw2suYSFJNBVksClOOdIzmDaCASUo0nxqCiWTmVkRGWGKiTU8VU4K7/OVV0q7b7oVdf7isNW6LOspwAqdwDi5cQQPuoQktIPAEz/AKb9bEerHerY9FtGQVM8fwB9bnD0FEkRo=</latexit>

�1 = 0.05
<latexit sha1_base64="JaxMZUeaAnr+QIWpkAvnRdRwED4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZmq6EYounFZwT6gHUsmk2lDM8mQZJQy9D/cuFDErf/izr8xbWehrQdCDuecS25OkHCmjet+O0vLK6tr64WN4ubW9s5uaW+/qWWqCG0QyaVqB1hTzgRtGGY4bSeK4jjgtBUMbyZ+65EqzaS4N6OE+jHuCxYxgo2VHrrcRkPc867cinveK5XtNQVaJF5OypCj3it9dUNJ0pgKQzjWuuO5ifEzrAwjnI6L3VTTBJMh7tOOpQLHVPvZdOsxOrZKiCKp7BEGTdXfExmOtR7FgU3G2Az0vDcR//M6qYku/YyJJDVUkNlDUcqRkWhSAQqZosTwkSWYKGZ3RWSAFSbGFlW0JXjzX14kzWrFO61U787Kteu8jgIcwhGcgAcXUINbqEMDCCh4hld4c56cF+fd+ZhFl5x85gD+wPn8AbekkVc=</latexit>

� = 0.1
<latexit sha1_base64="lQ3dfPYIjt1Rujnm9oRIE6ahP7g=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4CkkV9CIUvXisYD+kDWWznbRLN5uwuxFK6a/w4kERr/4cb/4bt20O2vpg4PHeDDPzwlRwbTzv21lZXVvf2CxsFbd3dvf2SweHDZ1kimGdJSJRrZBqFFxi3XAjsJUqpHEosBkOb6d+8wmV5ol8MKMUg5j2JY84o8ZKj50QDb32XL9bKnuuNwNZJn5OypCj1i19dXoJy2KUhgmqddv3UhOMqTKcCZwUO5nGlLIh7WPbUklj1MF4dvCEnFqlR6JE2ZKGzNTfE2Maaz2KQ9sZUzPQi95U/M9rZya6CsZcpplByeaLokwQk5Dp96THFTIjRpZQpri9lbABVZQZm1HRhuAvvrxMGhXXP3cr9xfl6k0eRwGO4QTOwIdLqMId1KAODGJ4hld4c5Tz4rw7H/PWFSefOYI/cD5/AJdTj5w=</latexit>

p = 0.2
<latexit sha1_base64="WwDnrEuQH6Z7JXaD8hcdJoK6m0s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0iqoBeh6MVjBdMW2lA22027dLNZdjdCCf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXiQ508bzvp3S2vrG5lZ5u7Kzu7d/UD08auk0U4QGJOWp6kRYU84EDQwznHakojiJOG1H47uZ336iSrNUPJqJpGGCh4LFjGBjpUDeeG69X615rjcHWiV+QWpQoNmvfvUGKckSKgzhWOuu70kT5lgZRjidVnqZphKTMR7SrqUCJ1SH+fzYKTqzygDFqbIlDJqrvydynGg9SSLbmWAz0sveTPzP62Ymvg5zJmRmqCCLRXHGkUnR7HM0YIoSwyeWYKKYvRWREVaYGJtPxYbgL7+8Slp1179w6w+XtcZtEUcZTuAUzsGHK2jAPTQhAAIMnuEV3hzhvDjvzseiteQUM8fwB87nD6jaje0=</latexit>

� = 0.01
<latexit sha1_base64="BV65hVKyh8AENiYdPQ/U24EATCs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgl6EghePFewHtkvJprNtaDa7JFmhLP0XXjwo4tV/481/Y9ruQVsfhDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbmt59QaR7LBzNJ0I/oUPKQM2qs9NgL0NAbt+p6/XLFfnOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+cZTcmaVAQljZZ80ZK7+7shopPUkCmxlRM1IL3sz8T+vm5rw2s+4TFKDki0GhakgJiaz88mAK2RGTCyhTHG7K2EjqigzNqSSDcFbPnmVtGpV76Jau7+s1Gt5HEU4gVM4Bw+uoA530IAmMJDwDK/w5mjnxXl3PhalBSfvOYY/cD5/AAMJj8Y=</latexit>

p = 0.1
<latexit sha1_base64="GHsAGalSKw3XqD6sSHkBD+XWD1k=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4CkkV9CIUvHisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmRZng2njet7O2vrG5tV3aKe/u7R8cVo6OmzrNFcOApSJV7YhqFFxiYLgR2M4U0iQS2IpGdzO/9YRK81Q+mnGGYUIHksecUWOlILv1XL9XqXquNwdZJX5BqlCg0at8dfspyxOUhgmqdcf3MhNOqDKcCZyWu7nGjLIRHWDHUkkT1OFkfuyUnFulT+JU2ZKGzNXfExOaaD1OItuZUDPUy95M/M/r5Ca+CSdcZrlByRaL4lwQk5LZ56TPFTIjxpZQpri9lbAhVZQZm0/ZhuAvv7xKmjXXv3RrD1fVeq2IowSncAYX4MM11OEeGhAAAw7P8ApvjnRenHfnY9G65hQzJ/AHzucPooaN3A==</latexit>

�1 = 0.01
<latexit sha1_base64="bloHzXcIQny3d2FBJejCRR0ISgE=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQTdC0Y3LCvYB7VgymUwbmkmGJKOUof/hxoUibv0Xd/6NaTsLbT0QcjjnXHJzgoQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2BNORO0aZjhtJMoiuOA03Ywupn67UeqNJPi3owT6sd4IFjECDZWeuhxGw1x37tyq67XL1fsNQNaJl5OKpCj0S9/9UJJ0pgKQzjWuuu5ifEzrAwjnE5KvVTTBJMRHtCupQLHVPvZbOsJOrFKiCKp7BEGzdTfExmOtR7HgU3G2Az1ojcV//O6qYku/YyJJDVUkPlDUcqRkWhaAQqZosTwsSWYKGZ3RWSIFSbGFlWyJXiLX14mrVrVO6vW7s4r9eu8jiIcwTGcggcXUIdbaEATCCh4hld4c56cF+fd+ZhHC04+cwh/4Hz+ALGUkVM=</latexit>�1 = 0.1

<latexit sha1_base64="syeDM2EVxd5nOmJkFAh9HY/R1JA=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgKiRV0I1QdOOygn1AG8pkMmmHTiZxZlIood/hxoUibv0Yd/6N0zQLbT0wcDjnXO6d4yecKe0431ZpbX1jc6u8XdnZ3ds/qB4etVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj+/mfmdCpWKxeNTThHoRHgoWMoK1kbw+N9EAD9wbx3YH1ZpjOznQKnELUoMCzUH1qx/EJI2o0IRjpXquk2gvw1Izwums0k8VTTAZ4yHtGSpwRJWX5UfP0JlRAhTG0jyhUa7+nshwpNQ08k0ywnqklr25+J/XS3V47WVMJKmmgiwWhSlHOkbzBlDAJCWaTw3BRDJzKyIjLDHRpqeKKcFd/vIqaddt98KuP1zWGrdFHWU4gVM4BxeuoAH30IQWEHiCZ3iFN2tivVjv1sciWrKKmWP4A+vzBz/AkRk=</latexit>

� = 0.4
<latexit sha1_base64="22+9GVtaNf2f2jPffZehEOFqgDM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07JbC3oRil48VrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXphwpo3nfTuFtfWNza3idmlnd2//oHx41NJxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HN/O/PYTVZrF8sFMEhoIPJQsYgQbKz32QmrwtefW+uWK53pzoFXi56QCORr98ldvEJNUUGkIx1p3fS8xQYaVYYTTaamXappgMsZD2rVUYkF1kM0PnqIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs+/RgClKDJ9Ygoli9lZERlhhYmxGJRuCv/zyKmlVXf/Crd7XKvWbPI4inMApnIMPl1CHO2hAEwgIeIZXeHOU8+K8Ox+L1oKTzxzDHzifP5vfj58=</latexit>

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>

Figure B.7.3: Generation-reconstruction trade-off of various text autoencoders on the
Yahoo dataset. The “real data” line marks the PPL of a language model trained
and evaluated on real data. We strive to approach the lower right corner with both
high BLEU and low PPL. The grey box identifies hyperparameters we finalize for
respective models. Points of severe collapse (Reverse PPL > 300) are removed from
the right panel.
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B.8 Additional Examples

Table B.8.2: Additional examples of vector arithmetic for tense inversion.

Input the staff is rude and the dr. does not spend time with you .
ARAE the staff is rude and the dr. does not worth two with you .
𝛽-VAE the staff was rude and the dr. did not spend time with your attitude .
AAE the staff was rude and the dr. does not spend time with you .
LAAE the staff was rude and the dr. is even for another of her entertained .
DAAE the staff was rude and the dr. did not make time with you .

Input slow service , the food tasted like last night ’s leftovers .
ARAE slow service , the food tasted like last night ’s leftovers .
𝛽-VAE slow service , the food tastes like last place serves .
AAE slow service , the food tasted like last night ’s leftovers .
LAAE slow service , the food , on this burger spot !
DAAE slow service , the food tastes like last night ... .

Input they are the worst credit union in arizona .
ARAE they are the worst bank credit in arizona .
𝛽-VAE they were the worst credit union in my book .
AAE they are the worst credit union in arizona .
LAAE they were the worst credit union in my heart .
DAAE they were the worst credit union in arizona ever .

Input i reported this twice and nothing was done .
ARAE i swear this twice and nothing was done .
𝛽-VAE i ’ve gone here and nothing too .
AAE i reported this twice and nothing was done .
LAAE i dislike this twice so pleasant guy .
DAAE i hate this pizza and nothing done .
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Table B.8.3: Additional examples of vector arithmetic for sentiment transfer.

Input this woman was extremely rude to me .

AAE
+𝑣 this woman was extremely rude to me .
+1.5𝑣 this woman was extremely rude to baby .
+2𝑣 this woman was extremely rude to muffins .

DAAE
+𝑣 this woman was extremely nice .
+1.5𝑣 this staff was amazing .
+2𝑣 this staff is amazing .

Input my boyfriend said his pizza was basic and bland also .

AAE
+𝑣 my boyfriend said his pizza was basic and tasty also .
+1.5𝑣 my shared said friday pizza was basic and tasty also .
+2𝑣 my shared got pizza pasta was basic and tasty also .

DAAE
+𝑣 my boyfriend said his pizza is also excellent .
+1.5𝑣 my boyfriend and pizza is excellent also .
+2𝑣 my smoked pizza is excellent and also exceptional .

Input the stew is quite inexpensive and very tasty .

AAE
−𝑣 the stew is quite inexpensive and very tasty .
−1.5𝑣 the stew is quite inexpensive and very very tasteless .
−2𝑣 the – was being slow - very very tasteless .

DAAE
−𝑣 the stew is quite an inexpensive and very large .
−1.5𝑣 the stew is quite a bit overpriced and very fairly brown .
−2𝑣 the hostess was quite impossible in an expensive and very few customers .

Input the patrons all looked happy and relaxed .

AAE
−𝑣 the patrons all looked happy and relaxed .
−1.5𝑣 the patrons all just happy and smelled .
−2𝑣 the patrons all just happy and smelled .

DAAE
−𝑣 the patrons all helped us were happy and relaxed .
−1.5𝑣 the patrons that all seemed around and left very stressed .
−2𝑣 the patrons actually kept us all looked long and was annoyed .
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Table B.8.4: Interpolations between two input sentences generated by AAE and our
model on the Yahoo dataset.

Input 1 what language should i learn to be more competitive in today ’s global culture ?
Input 2 what languages do you speak ?

AAE what language should i learn to be more competitive in today ’s global culture ?
what language should i learn to be more competitive in today ’s global culture ?
what language should you speak ?
what languages do you speak ?
what languages do you speak ?

DAAE what language should i learn to be more competitive in today ’s global culture ?
what language should i learn to be competitive today in arabic ’s culture ?
what languages do you learn to be english culture ?
what languages do you learn ?
what languages do you speak ?

Input 1 i believe angels exist .
Input 2 if you were a character from a movie , who would it be and why ?

AAE i believe angels exist .
i believe angels - there was the exist exist .
i believe in tsunami romeo or <unk> i think would it exist as the world population .
if you were a character from me in this , would we it be ( why !
if you were a character from a movie , who would it be and why ?

DAAE i believe angels exist .
i believe angels exist in the evolution .
what did <unk> worship by in <unk> universe ?
if you were your character from a bible , it will be why ?
if you were a character from a movie , who would it be and why ?
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Appendix C

Language Style Transfer from

Non-parallel Data

C.1 Proof of Lemma 4

Lemma 4. Let 𝑧 be a mixture of Gaussians 𝑝(𝑧) =
∑︀𝐾

𝑘=1 𝜋𝑘𝒩 (𝑧;𝜇𝑘,Σ𝑘). Assume

𝐾 ≥ 2, and there are two different Σ𝑖 ̸= Σ𝑗. Let 𝒴 = {(𝐴, 𝑏)||𝐴| ≠ 0} be all invertible

affine transformations, and 𝑝(𝑥|𝑦, 𝑧) = 𝒩 (𝑥;𝐴𝑧+ 𝑏, 𝜖2𝐼), in which 𝜖 is a noise. Then

for all 𝑦 ̸= 𝑦′ ∈ 𝒴, 𝑝(𝑥|𝑦) and 𝑝(𝑥|𝑦′) are different distributions.

Proof.

𝑝(𝑥|𝑦 = (𝐴, 𝑏)) =
𝐾∑︁
𝑘=1

𝜋𝑘𝒩 (𝑥;𝐴𝜇𝑘 + 𝑏, 𝐴Σ𝑘𝐴
⊤ + 𝜖2𝐼)

For different 𝑦 = (𝐴, 𝑏) and 𝑦′ = (𝐴′, 𝑏′), 𝑝(𝑥|𝑦) = 𝑝(𝑥|𝑦′) entails that for 𝑘 =

1, . . . , 𝐾, ⎧⎪⎨⎪⎩𝐴𝜇𝑘 + 𝑏 = 𝐴′𝜇𝑘 + 𝑏′

𝐴Σ𝑘𝐴
⊤ = 𝐴′Σ𝑘𝐴

′⊤

Since all 𝒴 are invertible,

(𝐴−1𝐴′)Σ𝑘(𝐴
−1𝐴′)⊤ = Σ𝑘
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Suppose Σ𝑘 = 𝑄𝑘𝐷𝑘𝑄
⊤
𝑘 is Σ𝑘’s orthogonal diagonalization. If 𝑘 = 1, all solutions for

𝐴−1𝐴′ have the form:

{︀
𝑄𝐷1/2𝑈𝐷−1/2𝑄⊤⃒⃒𝑈 is orthogonal

}︀
However, when 𝐾 ≥ 2 and there are two different Σ𝑖 ̸= Σ𝑗, the only solution is

𝐴−1𝐴′ = 𝐼, i.e. 𝐴 = 𝐴′, and thus 𝑏 = 𝑏′.

Therefore, for all 𝑦 ̸= 𝑦′, 𝑝(𝑥|𝑦) ̸= 𝑝(𝑥|𝑦′).
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Appendix D

Language Style Transfer with

Confounders

D.1 Classifier Accuracy in the Real Task

Here, we report performance of the invariant classifiers 𝐶𝑠 and 𝐶𝑜 to classify based on

sentiment and category respectively when their coupling is reversed (Section 5.4.2).

We take positive reviews from CSJ and HK, and take negative reviews from E and

CPA. The test accuracy in shown in Table D.1.1.

Table D.1.1: Classifier accuracy in the real task when sentiment-category coupling is
reversed.

Model Sentiment Category

𝐶ERM 64.0 36.0
𝐶𝑠 80.4 -
𝐶𝑜 - 62.9

131



D.2 Trade-off of Different Weight Combinations of

Loss Terms

Table D.2.2: Automatic evaluation results of sentiment transfer from different cate-
gories. Accuracies less than 30 are marked in red.

Model Sentiment Category PPL BLEUsrc

Krishna et al. [66] 22.6 57.4 35.8 19.2
He et al. [47] 77.7 22.5 44.6 47.6

𝜆𝐶ERM , 𝜆LM, 𝜆BT = 1, 1, 1 87.8 15.8 42.8 48.0
𝜆𝐶ERM , 𝜆LM, 𝜆BT = 2, 1, 1 89.6 14.6 42.4 47.0
𝜆𝐶ERM , 𝜆LM, 𝜆BT = 4, 1, 1 90.2 10.3 49.2 47.7

𝜆𝐶𝑠 , 𝜆LM, 𝜆BT = 1, 1, 1 72.8 38.7 45.3 61.7
𝜆𝐶𝑠 , 𝜆LM, 𝜆BT = 2, 1, 1 78.0 36.4 45.1 59.2
𝜆𝐶𝑠 , 𝜆LM, 𝜆BT = 4, 1, 1 85.0 29.5 42.5 53.0

𝜆𝐶𝑠 , 𝜆𝐶𝑜 , 𝜆LM, 𝜆BT = 1, 1, 1, 1 68.9 56.6 49.8 63.4
𝜆𝐶𝑠 , 𝜆𝐶𝑜 , 𝜆LM, 𝜆BT = 2, 1, 1, 1 73.1 53.3 51.7 61.4
𝜆𝐶𝑠 , 𝜆𝐶𝑜 , 𝜆LM, 𝜆BT = 4, 1, 1, 1 79.9 50.9 49.2 57.4

Input Copy 3.1 75.3 34.5 100.0

132



D.3 Additional Examples

Table D.3.3: Additional examples of the synthetic sentiment transfer task.

Input the new management team is horrible .
Reference the new management team is great .

Krishna et al. the new management team is terrible .
He et al. the new management team is excellent !
𝑀 w/ 𝐶ERM the new management team is amazing !
𝑀 w/ 𝐶𝑠 the new management team is great !
Ours the new management team is great .

Input did n’t even get a response .
Reference even got a response .

Krishna et al. they didn’t even respond to my question .
He et al. did a great job and the staff is very friendly !
𝑀 w/ 𝐶ERM did n’t even get a response !
𝑀 w/ 𝐶𝑠 did and even get a response !
Ours always great and always a response .

Input i got my car detailed here and it looked amazing !
Reference car was detailed and came out bad !

Krishna et al. i had a car detailed and it looked incredible ! ) .
He et al. i got my car detailed here and it looked awful .
𝑀 w/ 𝐶ERM i got my car detailed here and it looked terrible .
𝑀 w/ 𝐶𝑠 i got my car detailed here and it looked horrible .
Ours i got my car detailed here , it looked awful !

Input they are super friendly , very helpful , and amazingly quick !
Reference so slow and rude , not helpful at all !

Krishna et al. they were very friendly , very helpful , and unbelievably quick ! ) .
He et al. they are super rude , very helpful , and amazingly slow .
𝑀 w/ 𝐶ERM they are super rude , very unprofessional , and amazingly quick .
𝑀 w/ 𝐶𝑠 they are extremely rude , not helpful , and amazingly quick .
Ours they were incredibly rude , not helpful , but amazingly quick !
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Table D.3.4: Additional examples of sentiment transfer from different categories.

Clothing, Shoes and Jewelry (negative → positive)

Input very thin material . and too short for me . i ’m 5’10 ”
Krishna et al. love it . just too thin , too short , and too short .
He et al. very nice case . and great for iphone ’s . i ’m 5’10 ”
Ours very nice product . and fits fine for me . i ’m 5’10 ”

Input too big for my face
Krishna et al. too big for my face
He et al. great fit for my s6
Ours works great for my face

Home and Kitchen (negative → positive)

Input does not solve the lid problem !
Krishna et al. no way to fix the problem with the lid !
He et al. does the trick for everything problem !
Ours does the job the lid problem !

Input very poor quality . crooked on one end .
Krishna et al. it is poor quality .
He et al. very good quality . accurate on one end .
Ours very good quality . crooked on one end .

Electronics (positive → negative)

Input this is great . it easy to use
Krishna et al. easy to use .
He et al. this is too small . it had to return
Ours this was broken . it difficult to use

Input the drive works as designed
Krishna et al. the drive works as designed
He et al. the sized did not work properly
Ours the drive is too large

Cell Phones and Accessories (positive → negative)

Input it is durable and not as bulky as i thought
Krishna et al. not as heavy duty as i thought it would be .
He et al. it is uncomfortable and not as bulky as i thought
Ours it is cheap and not as protective as i thought

Input excellent quality and perfect fit
Krishna et al. great quality and perfect fit
He et al. horrible quality and returned it
Ours extremely small and tight fit

134



Bibliography

[1] Ion Androutsopoulos and Prodromos Malakasiotis. A survey of paraphrasing
and textual entailment methods. Journal of Artificial Intelligence Research, 38:
135–187, 2010.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In International Conference on Machine Learning, pages
214–223, 2017.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invari-
ant risk minimization. arXiv preprint arXiv:1907.02893, 2019.

[4] Yannis Assael, Thea Sommerschield, and Jonathan Prag. Restoring ancient text
using deep learning: a case study on Greek epigraphy. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 6368–6375, 2019.

[5] Alexei Baevski and Michael Auli. Adaptive input representations for neural
language modeling. arXiv preprint arXiv:1809.10853, 2018.

[6] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.
wav2vec 2.0: A framework for self-supervised learning of speech representa-
tions. Advances in Neural Information Processing Systems, 33:12449–12460,
2020.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[8] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271, 2018.

[9] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different domains.
Machine learning, 79(1):151–175, 2010.

135



[10] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized de-
noising auto-encoders as generative models. In Advances in Neural Information
Processing Systems, pages 899–907, 2013.

[11] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several
related classification tasks to a new unlabeled sample. Advances in neural in-
formation processing systems, 24:2178–2186, 2011.

[12] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Joze-
fowicz, and Samy Bengio. Generating sentences from a continuous space. In
Conference on Computational Natural Language Learning, 2016.

[13] Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra,
Fredrick Jelinek, John D Lafferty, Robert L Mercer, and Paul S Roossin. A
statistical approach to machine translation. Computational linguistics, 16(2):
79–85, 1990.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

[15] William Chan, Nikita Kitaev, Kelvin Guu, Mitchell Stern, and Jakob Uszkoreit.
Kermit: Generative insertion-based modeling for sequences. arXiv preprint
arXiv:1906.01604, 2019.

[16] Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu
Song, and Yoshua Bengio. Maximum-likelihood augmented discrete generative
adversarial networks. arXiv preprint arXiv:1702.07983, 2017.

[17] Benson Chen, Tianxiao Shen, Tommi S Jaakkola, and Regina Barzilay. Learning
to make generalizable and diverse predictions for retrosynthesis. arXiv preprint
arXiv:1910.09688, 2019.

[18] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets. In Advances in neural information processing
systems, 2016.

[19] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal,
John Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoen-
coder. arXiv preprint arXiv:1611.02731, 2016.

[20] Yo Joong Choe, Jiyeon Ham, and Kyubyong Park. An empirical study of
invariant risk minimization. arXiv preprint arXiv:2004.05007, 2020.

[21] Ondřej Cífka, Aliaksei Severyn, Enrique Alfonseca, and Katja Filippova. Eval
all, trust a few, do wrong to none: Comparing sentence generation models.
arXiv preprint arXiv:1804.07972, 2018.

136



[22] Antonia Creswell and Anil Anthony Bharath. Denoising adversarial autoen-
coders. IEEE transactions on neural networks and learning systems, 30(4):
968–984, 2018.

[23] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and
Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[25] Adji B Dieng, Yoon Kim, Alexander M Rush, and David M Blei. Avoiding
latent variable collapse with generative skip models. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 2397–2405. PMLR,
2019.

[26] Chris Donahue, Mina Lee, and Percy Liang. Enabling language models to fill
in the blanks. arXiv preprint arXiv:2005.05339, 2020.

[27] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training
for natural language understanding and generation. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

[28] Qing Dou and Kevin Knight. Large scale decipherment for out-of-domain ma-
chine translation. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, pages 266–275. Association for Computational Linguistics, 2012.

[29] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recur-
rent neural network grammars. arXiv preprint arXiv:1602.07776, 2016.

[30] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding
back-translation at scale. arXiv preprint arXiv:1808.09381, 2018.

[31] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text
generation via filling in the _. arXiv preprint arXiv:1801.07736, 2018.

[32] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. Style
transfer in text: Exploration and evaluation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

[33] Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, and Li Deng. Stylenet:
Generating attractive visual captions with styles. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3137–3146,
2017.

137



[34] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning, pages 1180–
1189. PMLR, 2015.

[35] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. The journal of machine learn-
ing research, 17(1):2096–2030, 2016.

[36] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2414–2423, 2016.

[37] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer.
Constant-time machine translation with conditional masked language models.
arXiv preprint arXiv:1904.09324, 2019.

[38] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-
predict: Parallel decoding of conditional masked language models. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6114–6123, 2019.

[39] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[40] Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Differentiable sched-
uled sampling for credit assignment. arXiv preprint arXiv:1704.06970, 2017.

[41] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural lan-
guage models with a continuous cache. arXiv preprint arXiv:1612.04426, 2016.

[42] Tommi Gröndahl and N Asokan. Effective writing style imitation via combina-
torial paraphrasing. arXiv preprint arXiv:1905.13464, 2019.

[43] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard
Socher. Non-autoregressive neural machine translation. arXiv preprint
arXiv:1711.02281, 2017.

[44] Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with auto-
matically inferred generation order. Transactions of the Association for Com-
putational Linguistics, 7:661–676, 2019.

[45] Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In
Advances in Neural Information Processing Systems, pages 11179–11189, 2019.

138



[46] Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick.
Lagging inference networks and posterior collapse in variational autoencoders.
arXiv preprint arXiv:1901.05534, 2019.

[47] Junxian He, Xinyi Wang, Graham Neubig, and Taylor Berg-Kirkpatrick. A
probabilistic formulation of unsupervised text style transfer. arXiv preprint
arXiv:2002.03912, 2020.

[48] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations, volume 3, 2017.

[49] R Devon Hjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, and Yoshua
Bengio. Boundary-seeking generative adversarial networks. arXiv preprint
arXiv:1702.08431, 2017.

[50] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious
case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[51] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P
Xing. Controllable text generation. arXiv preprint arXiv:1703.00955, 2017.

[52] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P
Xing. Toward controlled generation of text. In International Conference on
Machine Learning, pages 1587–1596. PMLR, 2017.

[53] Daniel Im Jiwoong Im, Sungjin Ahn, Roland Memisevic, and Yoshua Bengio.
Denoising criterion for variational auto-encoding framework. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[54] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-
to-image translation with conditional adversarial networks. arXiv preprint
arXiv:1611.07004, 2016.

[55] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[56] Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. Deep
learning for text style transfer: A survey. Computational Linguistics, 48(1):
155–205, 2022.

[57] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and
Omer Levy. Spanbert: Improving pre-training by representing and predicting
spans. Transactions of the Association for Computational Linguistics, 8:64–77,
2020.

139



[58] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and
Yonghui Wu. Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410, 2016.

[59] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim.
Learning to discover cross-domain relations with generative adversarial net-
works. arXiv preprint arXiv:1703.05192, 2017.

[60] Yoon Kim. Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751, Doha, Qatar, October 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1181. URL
https://www.aclweb.org/anthology/D14-1181.

[61] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[62] Yoon Kim, Sam Wiseman, Andrew C Miller, David Sontag, and Alexan-
der M Rush. Semi-amortized variational autoencoders. arXiv preprint
arXiv:1802.02550, 2018.

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[64] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[65] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M
Rush. Opennmt: Open-source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810, 2017.

[66] Kalpesh Krishna, John Wieting, and Mohit Iyyer. Reformulating unsupervised
style transfer as paraphrase generation. arXiv preprint arXiv:2010.05700, 2020.

[67] Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences
of discrete elements with the gumbel-softmax distribution. arXiv preprint
arXiv:1611.04051, 2016.

[68] Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng
Zhang, Aaron C Courville, and Yoshua Bengio. Professor forcing: A new al-
gorithm for training recurrent networks. In Advances In Neural Information
Processing Systems, pages 4601–4609, 2016.

[69] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-
autoregressive neural sequence modeling by iterative refinement. arXiv preprint
arXiv:1802.06901, 2018.

140

https://www.aclweb.org/anthology/D14-1181


[70] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[71] Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: A sim-
ple approach to sentiment and style transfer. arXiv preprint arXiv:1804.06437,
2018.

[72] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang,
Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics
aligned pre-training for vision-language tasks. In European Conference on Com-
puter Vision, pages 121–137. Springer, 2020.

[73] Dayiheng Liu, Jie Fu, Pengfei Liu, and Jiancheng Lv. TIGS: An inference
algorithm for text infilling with gradient search. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 4146–
4156, 2019.

[74] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In
Advances in Neural Information Processing Systems, pages 469–477, 2016.

[75] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image
translation networks. arXiv preprint arXiv:1703.00848, 2017.

[76] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

[77] Lajanugen Logeswaran, Honglak Lee, and Samy Bengio. Content preserving
text generation with attribute controls. In Advances in Neural Information
Processing Systems, pages 5103–5113, 2018.

[78] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

[79] Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabas Poczos, Graham
Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W Black, and Shrimai Prab-
humoye. Politeness transfer: A tag and generate approach. arXiv preprint
arXiv:2004.14257, 2020.

[80] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distri-
bution: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

[81] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Bren-
dan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

141



[82] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[83] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and
optimizing lstm language models. arXiv preprint arXiv:1708.02182, 2017.

[84] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev
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